File size: 7,419 Bytes
b2ca575
 
 
 
 
 
 
 
 
 
24f1b8f
b2ca575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f1b8f
b67621d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f1b8f
 
3239be9
24f1b8f
 
 
 
 
 
 
 
b67621d
24f1b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import math
from typing import List, Optional, Union

import torch
from PIL import Image
from transformers import BatchFeature
from transformers.models.qwen2_vl import Qwen2VLProcessor



class ColQwen2Processor(Qwen2VLProcessor):
    """
    Processor for ColQwen2.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.tokenizer.padding_side = "left"
        self.min_pixels = 4 * 28 * 28
        self.max_pixels = 768 * 28 * 28
        self.factor = 28
        self.max_ratio = 200

    @staticmethod
    def round_by_factor(number: float, factor: int) -> int:
        """Returns the closest integer to 'number' that is divisible by 'factor'."""
        return round(number / factor) * factor

    @staticmethod
    def ceil_by_factor(number: float, factor: int) -> int:
        """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
        return math.ceil(number / factor) * factor

    @staticmethod
    def floor_by_factor(number: float, factor: int) -> int:
        """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
        return math.floor(number / factor) * factor

    def smart_resize(self, height: int, width: int, factor: int, min_pixels: int, max_pixels: int) -> tuple[int, int]:
        """
        Rescales the image so that the following conditions are met:

        1. Both dimensions (height and width) are divisible by 'factor'.

        2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

        3. The aspect ratio of the image is maintained as closely as possible.
        """
        if max(height, width) / min(height, width) > self.max_ratio:
            raise ValueError(
                f"absolute aspect ratio must be smaller than {self.max_ratio}, "
                f"got {max(height, width) / min(height, width)}"
            )
        h_bar = max(factor, self.round_by_factor(height, factor))
        w_bar = max(factor, self.round_by_factor(width, factor))
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = self.floor_by_factor(height / beta, factor)
            w_bar = self.floor_by_factor(width / beta, factor)
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = self.ceil_by_factor(height * beta, factor)
            w_bar = self.ceil_by_factor(width * beta, factor)
        return h_bar, w_bar

    def process_images(
        self,
        images: List[Image.Image],
    ) -> BatchFeature:
        """
        Process images for ColQwen2.
        """
        texts_doc = [
            "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
        ] * len(images)

        def resize_and_convert(image: Image.Image) -> Image.Image:
            image_size = image.size
            resized_height, resized_width = self.smart_resize(
                image_size[1],
                image_size[0],
                factor=self.factor,
                min_pixels=self.min_pixels,
                max_pixels=self.max_pixels,
            )
            return image.convert("RGB").resize((resized_width, resized_height))

        images = [resize_and_convert(image) for image in images]

        batch_doc = self(
            text=texts_doc,
            images=images,
            padding="longest",
            return_tensors="pt",
        )

        # NOTE: The following code is a hack to make sure the scatter in DDP is done correctly when training
        # on multiple GPUs.
        offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]

        # separate pixel_values for each image
        pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())

        # pad pixel_values to the same length to be able to make it into a tensor
        max_length = max([len(pv) for pv in pixel_values])

        pixel_values = [
            torch.cat([pv, torch.zeros((max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device)])
            for pv in pixel_values
        ]
        batch_doc["pixel_values"] = torch.stack(pixel_values)

        return batch_doc

    def process_queries(
        self,
        queries: List[str],
        max_length: int = 50,
        suffix: Optional[str] = None,
    ) -> BatchFeature:
        """
        Process queries for ColQwen2.
        """
        if suffix is None:
            suffix = "<pad>" * 10
        texts_query: List[str] = []

        for query in queries:
            query = f"Query: {query}"
            query += suffix  # add suffix (pad tokens)
            texts_query.append(query)

        batch_query = self(
            text=texts_query,
            return_tensors="pt",
            padding="longest",
        )

        return batch_query

    def score(
        self,
        qs: List[torch.Tensor],
        ps: List[torch.Tensor],
        device: Optional[Union[str, torch.device]] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
        """
        return self.score_multi_vector(qs, ps, device=device, **kwargs)


    @staticmethod
    def get_torch_device(device: str = "auto") -> str:
        """
        Returns the device (string) to be used by PyTorch.
    
        `device` arg defaults to "auto" which will use:
        - "cuda:0" if available
        - else "mps" if available
        - else "cpu".
        """
    
        if device == "auto":
            if torch.cuda.is_available():
                device = "cuda:0"
            elif torch.backends.mps.is_available():  # for Apple Silicon
                device = "mps"
            else:
                device = "cpu"
    
        return device
    
    def score_multi_vector(
        self,
        qs: List[torch.Tensor],
        ps: List[torch.Tensor],
        batch_size: int = 128,
        device: Optional[Union[str, torch.device]] = None,
    ) -> torch.Tensor:
        """
        Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
        """
        device = device or self.get_torch_device("auto")

        if len(qs) == 0:
            raise ValueError("No queries provided")
        if len(ps) == 0:
            raise ValueError("No passages provided")

        scores_list: List[torch.Tensor] = []

        for i in range(0, len(qs), batch_size):
            scores_batch = []
            qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to(
                device
            )
            for j in range(0, len(ps), batch_size):
                ps_batch = torch.nn.utils.rnn.pad_sequence(
                    ps[j : j + batch_size], batch_first=True, padding_value=0
                ).to(device)
                scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
            scores_batch = torch.cat(scores_batch, dim=1).cpu()
            scores_list.append(scores_batch)

        scores = torch.cat(scores_list, dim=0)
        assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"

        scores = scores.to(torch.float32)
        return scores