Commit
·
5eb0cfa
1
Parent(s):
3f890cc
update
Browse files- README.md +92 -0
- config.json +29 -0
- custom_generate/generate.py +272 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +42 -0
- tokenizer.json +0 -0
- tokenizer_config.json +167 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- custom_generate
|
5 |
+
- sampling
|
6 |
+
- kvcache
|
7 |
+
---
|
8 |
+
|
9 |
+
# Sampling with KV Cache
|
10 |
+
|
11 |
+
## Description
|
12 |
+
A clean, hackable implementation of sampling (also called ancestral sampling or multinomial sampling). This is a simplified alternative to the complex generation mixin in transformers, designed for readability and ease of modification while maintaining full performance.
|
13 |
+
|
14 |
+
The implementation supports both sampling and greedy decoding modes, with optional temperature scaling and top-k/top-p filtering.
|
15 |
+
|
16 |
+
## Base model
|
17 |
+
- [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct)
|
18 |
+
|
19 |
+
## Model compatibility
|
20 |
+
Most transformer LLM/VLM models trained for causal language modeling.
|
21 |
+
|
22 |
+
## Relevant Arguments
|
23 |
+
- `temperature` (float): Sampling temperature (default: 1.0, higher = more random)
|
24 |
+
- `top_k` (int): Only consider top-k most probable tokens (default: None)
|
25 |
+
- `top_p` (float): Only consider tokens with cumulative probability <= top_p (default: None)
|
26 |
+
- `do_sample` (bool): Whether to use sampling (True, default) or greedy decoding (False)
|
27 |
+
|
28 |
+
### Logits Processing Order
|
29 |
+
Logits processors are applied in sequence: `temperature → softmax → top_k → top_p` (same as HuggingFace's `LogitProcessor` system). Temperature scaling occurs before top-p filtering, affecting the probability distribution that top-p operates on.
|
30 |
+
|
31 |
+
For example, with `temperature=1.0`, `top_p=0.9` might include tokens A, B, C. With `temperature=0.5`, probability mass is much more concentrated, so `top_p=0.9` might only include token A.
|
32 |
+
|
33 |
+
## Outputs
|
34 |
+
When `return_dict_in_generate=True`, returns a dictionary with:
|
35 |
+
- `sequences`: Generated token IDs
|
36 |
+
- `scores`: Log probabilities of sampled tokens (with temperature/sampling modifications)
|
37 |
+
- `logprobs`: Original model log probabilities (T=1, no modifications)
|
38 |
+
Otherwise, returns a tensor of generated token IDs.
|
39 |
+
|
40 |
+
## Example usage
|
41 |
+
|
42 |
+
```py
|
43 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
+
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", device_map="auto")
|
47 |
+
|
48 |
+
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
|
49 |
+
|
50 |
+
# Basic sampling
|
51 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling", trust_remote_code=True)
|
52 |
+
|
53 |
+
# With temperature
|
54 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling", temperature=0.8, trust_remote_code=True)
|
55 |
+
|
56 |
+
# With top-k
|
57 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling", top_k=50, trust_remote_code=True)
|
58 |
+
|
59 |
+
# With top-p (nucleus sampling)
|
60 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling", top_p=0.9, trust_remote_code=True)
|
61 |
+
|
62 |
+
# Greedy decoding (no sampling)
|
63 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling", do_sample=False, trust_remote_code=True)
|
64 |
+
|
65 |
+
# Get detailed output with probabilities
|
66 |
+
gen_out = model.generate(
|
67 |
+
**inputs,
|
68 |
+
custom_generate="manueldeprada/sampling",
|
69 |
+
return_dict_in_generate=True,
|
70 |
+
trust_remote_code=True
|
71 |
+
)
|
72 |
+
print(f"Generated text: {tokenizer.batch_decode(gen_out['sequences'], skip_special_tokens=True)}")
|
73 |
+
print(f"Sampling scores: {gen_out['scores']}")
|
74 |
+
print(f"Model log probabilities: {gen_out['logprobs']}")
|
75 |
+
```
|
76 |
+
|
77 |
+
## Algorithm
|
78 |
+
1. Prepare input sequences
|
79 |
+
2. For each generation step:
|
80 |
+
- Get logits from the model for the current sequence
|
81 |
+
- Apply temperature scaling to logits
|
82 |
+
- Optionally apply top-k filtering (keep only top-k tokens)
|
83 |
+
- Optionally apply top-p filtering (nucleus sampling)
|
84 |
+
- Convert to probabilities using softmax
|
85 |
+
- Sample from the probability distribution (or take argmax for greedy)
|
86 |
+
- Append the selected token to the sequence
|
87 |
+
- Track sequence completion
|
88 |
+
3. Return generated sequences and probability information
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 0,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 576,
|
11 |
+
"initializer_range": 0.041666666666666664,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"is_llama_config": true,
|
14 |
+
"max_position_embeddings": 8192,
|
15 |
+
"model_type": "llama",
|
16 |
+
"num_attention_heads": 9,
|
17 |
+
"num_hidden_layers": 30,
|
18 |
+
"num_key_value_heads": 3,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_interleaved": false,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rope_theta": 100000,
|
24 |
+
"tie_word_embeddings": true,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.40.1",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 49152
|
29 |
+
}
|
custom_generate/generate.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Cache, DynamicCache
|
3 |
+
from transformers.generation.utils import ModelOutput
|
4 |
+
from typing import Optional, Any
|
5 |
+
|
6 |
+
def prepare_inputs_for_generation(
|
7 |
+
input_ids: torch.LongTensor,
|
8 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
9 |
+
cache_position: Optional[torch.LongTensor] = None,
|
10 |
+
**kwargs,
|
11 |
+
):
|
12 |
+
input_ids = input_ids[:, cache_position].clone(memory_format=torch.contiguous_format)
|
13 |
+
model_inputs = {"cache_position": cache_position,
|
14 |
+
"past_key_values": None,
|
15 |
+
"input_ids": input_ids,
|
16 |
+
"inputs_embeds": None,
|
17 |
+
"attention_mask": attention_mask,
|
18 |
+
}
|
19 |
+
if attention_mask is not None and kwargs.get("position_ids") is None:
|
20 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
21 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
22 |
+
kwargs["position_ids"] = position_ids
|
23 |
+
model_inputs.update({k: v for k, v in kwargs.items() if k not in model_inputs})
|
24 |
+
return model_inputs
|
25 |
+
|
26 |
+
def update_model_kwargs_for_generation(
|
27 |
+
outputs: ModelOutput,
|
28 |
+
model_kwargs: dict[str, Any],
|
29 |
+
num_new_tokens: int = 1,
|
30 |
+
) -> dict[str, Any]:
|
31 |
+
if "token_type_ids" in model_kwargs:
|
32 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
33 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
34 |
+
if "attention_mask" in model_kwargs:
|
35 |
+
attention_mask = model_kwargs["attention_mask"]
|
36 |
+
model_kwargs["attention_mask"] = torch.cat(
|
37 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
38 |
+
)
|
39 |
+
past_positions = model_kwargs.pop("cache_position")
|
40 |
+
new_positions = torch.arange(
|
41 |
+
past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype
|
42 |
+
).to(past_positions.device)
|
43 |
+
model_kwargs["cache_position"] = torch.cat((past_positions, new_positions))
|
44 |
+
return model_kwargs
|
45 |
+
|
46 |
+
|
47 |
+
def next_logits_with_cache_update(model, model_kwargs, input_ids):
|
48 |
+
"""
|
49 |
+
Gets the next token logits and updates the KV cache:
|
50 |
+
- Runs the model forward pass
|
51 |
+
- Extracts logits for the last token
|
52 |
+
- Updates the KV cache
|
53 |
+
- Returns updated `model_kwargs` and `logits`
|
54 |
+
|
55 |
+
Args:
|
56 |
+
model: The language model
|
57 |
+
model_kwargs: Model keyword arguments including KV cache
|
58 |
+
input_ids: Current input token IDs
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Updated model_kwargs, logits for the next token
|
62 |
+
"""
|
63 |
+
model_inputs = prepare_inputs_for_generation(input_ids, **model_kwargs)
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = model(**model_inputs, return_dict=True)
|
66 |
+
|
67 |
+
logits = outputs.logits[:, -1].detach()
|
68 |
+
model_kwargs = update_model_kwargs_for_generation(outputs, model_kwargs)
|
69 |
+
del outputs
|
70 |
+
return model_kwargs, logits
|
71 |
+
|
72 |
+
|
73 |
+
def init_gen(model_kwargs, model, max_new_tokens, bos_token_id):
|
74 |
+
"""
|
75 |
+
Initializes the generation process and prepares the KV cache:
|
76 |
+
- Sets up input sequences and model inputs
|
77 |
+
- Prepares the KV cache for generation
|
78 |
+
- Returns updated `model_kwargs` and `input_ids`
|
79 |
+
|
80 |
+
Args:
|
81 |
+
model_kwargs: Model keyword arguments
|
82 |
+
model: The language model
|
83 |
+
max_new_tokens: Maximum number of new tokens to generate
|
84 |
+
bos_token_id: Beginning-of-sequence token ID
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
Model keyword arguments and input token IDs
|
88 |
+
"""
|
89 |
+
input_ids = model_kwargs.pop("input_ids")
|
90 |
+
model_kwargs["past_key_values"] = None
|
91 |
+
model_kwargs["cache_position"] = torch.ones(input_ids.shape[1], dtype=torch.int64, device=input_ids.device).cumsum(0) - 1
|
92 |
+
return model_kwargs, input_ids
|
93 |
+
|
94 |
+
|
95 |
+
def _apply_top_k(ps, model):
|
96 |
+
"""Apply top-k filtering to probabilities."""
|
97 |
+
if not hasattr(model, "generation_config") or not hasattr(
|
98 |
+
model.generation_config, "top_k"
|
99 |
+
):
|
100 |
+
return ps
|
101 |
+
|
102 |
+
top_k = model.generation_config.top_k
|
103 |
+
if top_k is None or top_k >= ps.size(-1):
|
104 |
+
return ps
|
105 |
+
|
106 |
+
indices_to_remove = ps < torch.topk(ps, top_k)[0][..., -1, None]
|
107 |
+
ps[indices_to_remove] = 0.0
|
108 |
+
return ps / ps.sum(dim=-1, keepdim=True)
|
109 |
+
|
110 |
+
|
111 |
+
def _apply_top_p(ps, model):
|
112 |
+
"""Apply top-p (nucleus) filtering to probabilities."""
|
113 |
+
if not hasattr(model, "generation_config") or not hasattr(
|
114 |
+
model.generation_config, "top_p"
|
115 |
+
):
|
116 |
+
return ps
|
117 |
+
|
118 |
+
top_p = model.generation_config.top_p
|
119 |
+
if top_p is None or top_p >= 1.0:
|
120 |
+
return ps
|
121 |
+
|
122 |
+
sorted_probs, sorted_indices = torch.sort(ps, descending=True)
|
123 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
124 |
+
|
125 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
126 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
127 |
+
sorted_indices_to_remove[..., 0] = 0
|
128 |
+
|
129 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
130 |
+
1, sorted_indices, sorted_indices_to_remove
|
131 |
+
)
|
132 |
+
ps[indices_to_remove] = 0.0
|
133 |
+
return ps / ps.sum(dim=-1, keepdim=True)
|
134 |
+
|
135 |
+
|
136 |
+
def sampling(
|
137 |
+
model_kwargs,
|
138 |
+
model,
|
139 |
+
eos_token_ids,
|
140 |
+
pad_token_id,
|
141 |
+
bos_token_id,
|
142 |
+
do_sample=True,
|
143 |
+
max_new_tokens=20,
|
144 |
+
temperature=1.0,
|
145 |
+
):
|
146 |
+
"""
|
147 |
+
Sampling implementation with proper KV caching.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
prompts: List of input prompts
|
151 |
+
model: The language model
|
152 |
+
max_new_tokens: Maximum number of new tokens to generate
|
153 |
+
eos_token_ids: List of end-of-sequence token IDs
|
154 |
+
pad_token_id: Padding token ID
|
155 |
+
bos_token_id: Beginning-of-sequence token ID
|
156 |
+
max_new_tokens: Maximum number of new tokens to generate
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
Generated sequences, log probabilities, and metadata
|
160 |
+
"""
|
161 |
+
# Initialize the generation process and prepare the KV cache
|
162 |
+
model_kwargs, input_ids = init_gen(
|
163 |
+
model_kwargs, model, max_new_tokens, bos_token_id
|
164 |
+
)
|
165 |
+
batch_size, _ = input_ids.shape
|
166 |
+
|
167 |
+
# Keeps track of which sequences are finished and their lengths
|
168 |
+
active_seqs = input_ids.new_ones((batch_size, 1), dtype=torch.bool)
|
169 |
+
# Modified log probabilities of the sequences
|
170 |
+
scores = torch.zeros((batch_size, max_new_tokens), dtype=model.dtype)
|
171 |
+
# Unfiltered sequence log probabilities (temperature=1, no sampling processors applied)
|
172 |
+
logprobs = torch.zeros((batch_size, max_new_tokens), dtype=model.dtype)
|
173 |
+
|
174 |
+
for i in range(max_new_tokens):
|
175 |
+
# Get the next token probabilities and update the KV cache
|
176 |
+
model_kwargs, logits = next_logits_with_cache_update(
|
177 |
+
model, model_kwargs, input_ids
|
178 |
+
)
|
179 |
+
# Store original model probabilities (temperature=1, no sampling processors applied)
|
180 |
+
model_ps = logits.softmax(-1)
|
181 |
+
|
182 |
+
# Logit processors (temperature, top-k, top-p). We can chain these!
|
183 |
+
ps = (logits / temperature).softmax(-1)
|
184 |
+
ps = _apply_top_k(ps, model)
|
185 |
+
ps = _apply_top_p(ps, model)
|
186 |
+
|
187 |
+
# Sample the next token and gather the log probabilities
|
188 |
+
if do_sample: # Sampling
|
189 |
+
next_token_ids = (
|
190 |
+
torch.multinomial(ps, 1) * active_seqs + pad_token_id * ~active_seqs
|
191 |
+
)
|
192 |
+
else: # Greedy decoding
|
193 |
+
next_token_ids = (
|
194 |
+
torch.argmax(ps, dim=-1).unsqueeze(-1) * active_seqs
|
195 |
+
+ pad_token_id * ~active_seqs
|
196 |
+
)
|
197 |
+
next_token_logprobs = ps.gather(-1, next_token_ids).log()
|
198 |
+
next_token_model_logprobs = model_ps.gather(-1, next_token_ids).log()
|
199 |
+
|
200 |
+
input_ids = torch.cat([input_ids, next_token_ids], dim=-1)
|
201 |
+
scores[:, i] = (next_token_logprobs * active_seqs).squeeze()
|
202 |
+
logprobs[:, i] = (next_token_model_logprobs * active_seqs).squeeze()
|
203 |
+
|
204 |
+
active_seqs &= ~torch.isin(next_token_ids, eos_token_ids)
|
205 |
+
if active_seqs.sum() == 0:
|
206 |
+
break
|
207 |
+
return input_ids.detach().cpu(), scores[:, : i + 1], logprobs[:, : i + 1]
|
208 |
+
|
209 |
+
|
210 |
+
def generate(model, **kwargs):
|
211 |
+
"""
|
212 |
+
Sampling strategy - multinomial sampling with temperature and optional top-k/top-p filtering.
|
213 |
+
Simple implementation with proper KV caching support.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
model: The language model
|
217 |
+
model_kwargs: Model keyword arguments from the tokenizer
|
218 |
+
generation_config: Generation configuration
|
219 |
+
temperature: Sampling temperature (higher = more random)
|
220 |
+
top_k: Only consider top-k most probable tokens
|
221 |
+
top_p: Only consider tokens with cumulative probability <= top_p
|
222 |
+
**kwargs: Additional arguments
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
Generated token IDs
|
226 |
+
"""
|
227 |
+
generation_config = model.generation_config
|
228 |
+
max_new_tokens = kwargs.get("max_new_tokens", generation_config.max_new_tokens)
|
229 |
+
max_new_tokens = 512 if max_new_tokens is None else max_new_tokens
|
230 |
+
do_sample = kwargs.get("do_sample", True)
|
231 |
+
eos_token_ids = kwargs.get("eos_token_ids", generation_config.eos_token_id)
|
232 |
+
if eos_token_ids is None:
|
233 |
+
raise ValueError(
|
234 |
+
"Model generation config does not have an EOS token id. You must provide it to generate() with the eos_token_ids argument."
|
235 |
+
)
|
236 |
+
eos_token_ids = torch.as_tensor(eos_token_ids, device=model.device)
|
237 |
+
if eos_token_ids is not None and eos_token_ids.ndim == 0:
|
238 |
+
eos_token_ids = eos_token_ids.unsqueeze(0)
|
239 |
+
|
240 |
+
pad_token_id = kwargs.get(
|
241 |
+
"pad_token_id",
|
242 |
+
generation_config.pad_token_id
|
243 |
+
if generation_config.pad_token_id is not None
|
244 |
+
else eos_token_ids[0],
|
245 |
+
)
|
246 |
+
bos_token_id = kwargs.get("bos_token_id", generation_config.bos_token_id)
|
247 |
+
if bos_token_id is None:
|
248 |
+
raise ValueError(
|
249 |
+
"Model generation config does not have a BOS token id. You must provide it to generate() with the bos_token_id argument."
|
250 |
+
)
|
251 |
+
temperature = kwargs.get("temperature", 1.0)
|
252 |
+
return_dict = kwargs.get("return_dict_in_generate", False)
|
253 |
+
|
254 |
+
generated_ids, scores, logprobs = sampling(
|
255 |
+
model_kwargs=kwargs,
|
256 |
+
model=model,
|
257 |
+
eos_token_ids=eos_token_ids,
|
258 |
+
pad_token_id=pad_token_id,
|
259 |
+
bos_token_id=bos_token_id,
|
260 |
+
do_sample=do_sample,
|
261 |
+
max_new_tokens=max_new_tokens,
|
262 |
+
temperature=temperature,
|
263 |
+
)
|
264 |
+
|
265 |
+
if return_dict:
|
266 |
+
return {
|
267 |
+
"sequences": generated_ids,
|
268 |
+
"scores": scores,
|
269 |
+
"logprobs": logprobs,
|
270 |
+
}
|
271 |
+
else:
|
272 |
+
return generated_ids
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.40.1"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80521b40281d6ce74e35c9282c22539e75aa0ac8578892b2a59955ef78d55da1
|
3 |
+
size 269060552
|
special_tokens_map.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<|im_start|>",
|
5 |
+
"<|im_end|>",
|
6 |
+
"<repo_name>",
|
7 |
+
"<reponame>",
|
8 |
+
"<file_sep>",
|
9 |
+
"<filename>",
|
10 |
+
"<gh_stars>",
|
11 |
+
"<issue_start>",
|
12 |
+
"<issue_comment>",
|
13 |
+
"<issue_closed>",
|
14 |
+
"<jupyter_start>",
|
15 |
+
"<jupyter_text>",
|
16 |
+
"<jupyter_code>",
|
17 |
+
"<jupyter_output>",
|
18 |
+
"<jupyter_script>",
|
19 |
+
"<empty_output>"
|
20 |
+
],
|
21 |
+
"bos_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"eos_token": {
|
29 |
+
"content": "<|endoftext|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
},
|
35 |
+
"unk_token": {
|
36 |
+
"content": "<|endoftext|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false
|
41 |
+
}
|
42 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<repo_name>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<reponame>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<file_sep>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<filename>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<gh_stars>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<jupyter_script>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<empty_output>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
}
|
140 |
+
},
|
141 |
+
"additional_special_tokens": [
|
142 |
+
"<|endoftext|>",
|
143 |
+
"<|im_start|>",
|
144 |
+
"<|im_end|>",
|
145 |
+
"<repo_name>",
|
146 |
+
"<reponame>",
|
147 |
+
"<file_sep>",
|
148 |
+
"<filename>",
|
149 |
+
"<gh_stars>",
|
150 |
+
"<issue_start>",
|
151 |
+
"<issue_comment>",
|
152 |
+
"<issue_closed>",
|
153 |
+
"<jupyter_start>",
|
154 |
+
"<jupyter_text>",
|
155 |
+
"<jupyter_code>",
|
156 |
+
"<jupyter_output>",
|
157 |
+
"<jupyter_script>",
|
158 |
+
"<empty_output>"
|
159 |
+
],
|
160 |
+
"bos_token": "<|endoftext|>",
|
161 |
+
"clean_up_tokenization_spaces": false,
|
162 |
+
"eos_token": "<|endoftext|>",
|
163 |
+
"model_max_length": 8192,
|
164 |
+
"tokenizer_class": "GPT2Tokenizer",
|
165 |
+
"unk_token": "<|endoftext|>",
|
166 |
+
"vocab_size": 49152
|
167 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|