Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,56 @@ base_model:
|
|
9 |
pipeline_tag: text-classification
|
10 |
tags:
|
11 |
- sentiment
|
12 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pipeline_tag: text-classification
|
10 |
tags:
|
11 |
- sentiment
|
12 |
+
---
|
13 |
+
|
14 |
+
# Latvian Twitter Sentiment Analysis
|
15 |
+
|
16 |
+
This is a BERT-base model trained on ~26,000 manually annotated tweets in Latvian from various sources for sentiment analysis.
|
17 |
+
|
18 |
+
|
19 |
+
<b>Labels</b>:
|
20 |
+
0 -> Neutral;
|
21 |
+
1 -> Positive;
|
22 |
+
2 -> Negative.
|
23 |
+
|
24 |
+
This sentiment analysis model has been integrated in [this HF Space](https://huggingface.co/spaces/matiss/Latvian-Twitter-Sentiment-Analysis).
|
25 |
+
|
26 |
+
## Example Pipeline
|
27 |
+
```python
|
28 |
+
from transformers import pipeline
|
29 |
+
model_path = "matiss/Latvian-Twitter-Sentiment-Analysis"
|
30 |
+
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
31 |
+
sentiment_task("Man gar拧o pank奴kas ar kotlet膿m")
|
32 |
+
```
|
33 |
+
```
|
34 |
+
[{'label': 'Positive', 'score': 0.9032208919525146}]
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Corpora Used for Training
|
40 |
+
---------
|
41 |
+
* [Twit膿diens](https://huggingface.co/datasets/matiss/Latvian-Twitter-Eater-Corpus-Sentiment) - the Latvian Twitter Eater Corpus of ~5000 manually annotated food-related tweets.
|
42 |
+
* [Pinnis](https://github.com/pmarcis/latvian-tweet-corpus) - ~ 7000 tweets from politicians and companies
|
43 |
+
* [Peisenieks](https://github.com/FnTm/latvian-tweet-sentiment-corpus) - ~ 1000 general tweets with sentiment annotated by multiple annotators
|
44 |
+
* [V墨ksna](https://github.com/RinaldsViksna/sikzinu_analize) - ~ 4000 general tweets
|
45 |
+
* [Nicemanis](https://github.com/nicemanis/LV-twitter-sentiment-corpus) - ~ 2000 general tweets
|
46 |
+
* [艩pats](https://github.com/gatis/om) - ~ 6000 general tweets
|
47 |
+
|
48 |
+
|
49 |
+
Publications
|
50 |
+
---------
|
51 |
+
|
52 |
+
If you use this corpus or scripts, please cite the following paper:
|
53 |
+
|
54 |
+
Uga Spro模is and Mat墨ss Rikters (2020). "[What Can We Learn From Almost a Decade of Food Tweets.](https://arxiv.org/abs/2007.05194)" In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective ([Baltic HLT 2020](https://klc.vdu.lt/hlt/programme)) (2020).
|
55 |
+
|
56 |
+
```bibtex
|
57 |
+
@inproceedings{SprogisRikters2020BalticHLT,
|
58 |
+
author = {Spro模is, Uga and Rikters, Mat墨ss},
|
59 |
+
booktitle={In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective (Baltic HLT 2020)},
|
60 |
+
title = {{What Can We Learn From Almost a Decade of Food Tweets}},
|
61 |
+
address={Kaunas, Lithuania},
|
62 |
+
year = {2020}
|
63 |
+
}
|
64 |
+
```
|