matth commited on
Commit
10bbf96
·
1 Parent(s): 92aac2e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -3
README.md CHANGED
@@ -9,16 +9,25 @@ Automatic detection of blast cells in ALL data using transformers.
9
  Official implementation of our work: *"Automated Identification of Cell Populations in Flow Cytometry Data with Transformers"*
10
  by Matthias Wödlinger, Michael Reiter, Lisa Weijler, Margarita Maurer-Granofszky, Angela Schumich, Elisa O Sajaroff, Stefanie Groeneveld-Krentz, Jorge G Rossi, Leonid Karawajew, Richard Ratei and Michael Dworzak
11
 
12
- ## Usage
13
 
14
  Load the pretrained model from huggingface
15
 
16
- ```
17
  from transformers import AutoModel
18
  flowformer = AutoModel.from_pretrained("matth/flowformer", trust_remote_code=True)
19
  ```
20
 
21
- `trust_remote_code=True` is necessary because the model code uses a custom architecture.
 
 
 
 
 
 
 
 
 
22
 
23
  ## Citation
24
 
 
9
  Official implementation of our work: *"Automated Identification of Cell Populations in Flow Cytometry Data with Transformers"*
10
  by Matthias Wödlinger, Michael Reiter, Lisa Weijler, Margarita Maurer-Granofszky, Angela Schumich, Elisa O Sajaroff, Stefanie Groeneveld-Krentz, Jorge G Rossi, Leonid Karawajew, Richard Ratei and Michael Dworzak
11
 
12
+ ## Load the model
13
 
14
  Load the pretrained model from huggingface
15
 
16
+ ```python
17
  from transformers import AutoModel
18
  flowformer = AutoModel.from_pretrained("matth/flowformer", trust_remote_code=True)
19
  ```
20
 
21
+ `trust_remote_code=True` is necessary because the model code uses a custom architecture.
22
+
23
+ ## Usage
24
+
25
+ The model expects as input a pytorch tensor `x` with shape `batch_size x num_cells x num_markers`.
26
+ The pretrained model is trained with the the markers: *TIME, FSC-A, FSC-W, SSC-A, CD20, CD10, CD45, CD34, CD19, CD38, SY41*. If you use different markers (or a different ordering of markers), you need to specify this by setting the `markers` kwarg in the model forward pass:
27
+
28
+ ```python
29
+ output = flowformer(x, markers=["Marker1", "Marker2", "Marker3"])
30
+ ```
31
 
32
  ## Citation
33