rootacess commited on
Commit
cd4e0ef
·
verified ·
1 Parent(s): 1d4cf4f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -3
README.md CHANGED
@@ -1,3 +1,124 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen2.5-Coder-7B-Instruct
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ tags:
10
+ - code
11
+ - chat
12
+ - microsoft
13
+ - nextcoder
14
+ - selekt
15
+ datasets:
16
+ - microsoft/NextCoderDataset
17
+ ---
18
+
19
+
20
+ # NextCoder-7B
21
+ <p align="center">
22
+ <a href="https://github.com/microsoft/NextCoder">GitHub</a>&nbsp&nbsp | &nbsp&nbsp <a href="https://arxiv.org/abs/2503.03656">Arxiv</a>
23
+ </p>
24
+
25
+ > Published in ICML'2025
26
+
27
+ ## Introduction
28
+
29
+ NextCoder is the latest series of Code-Editing large language models developed using the Qwen2.5-Coder Instruct variants as base and trained with novel Selective Knowledge Transfer finetuning methodology as introduced in the paper. NextCoder family model comes in 3 different sizes 7, 14, 32 billion parameters, to meet the needs of different developers.
30
+ Following are the key improvements:
31
+ - Significantly improvements in **code editing**, NextCoder-32B has performing on par with GPT-4o on complex benchmarks like Aider-Polyglot with performance increment of 44% from their base model.
32
+ - No loss of generalizibility, due to our new finetuning method **SeleKT**
33
+ - **Long-context Support** up to 32K tokens.
34
+
35
+ **This repo contains the NextCoder-7B model**, which has the following features:
36
+ - Type: Causal Language Models
37
+ - Training Stage: Post-training with SeleKT
38
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
39
+ - Number of Parameters: 7.61B
40
+ - Number of Paramaters (Non-Embedding): 6.53B
41
+ - Number of Layers: 28
42
+ - Number of Attention Heads (GQA): 28 for Q and 4 for KV
43
+
44
+ For more details, please refer to our [blog](), [GitHub](https://github.com/microsoft/NextCoder), [Arxiv](https://arxiv.org/abs/2503.03656).
45
+
46
+ ## Requirements
47
+
48
+ The code of NextCoder is based on Qwen2.5 base models which has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
49
+
50
+ With `transformers<4.37.0`, you will encounter the following error:
51
+ ```
52
+ KeyError: 'qwen2'
53
+ ```
54
+
55
+ ## Quickstart
56
+
57
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
58
+
59
+ ```python
60
+ from transformers import AutoModelForCausalLM, AutoTokenizer
61
+
62
+ model_name = "microsoft/NextCoder-7B"
63
+
64
+ model = AutoModelForCausalLM.from_pretrained(
65
+ model_name,
66
+ torch_dtype="auto",
67
+ device_map="auto",
68
+ )
69
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
70
+
71
+ prompt = """
72
+ Fix the following function that divides two numbers to handle all the edge cases:
73
+
74
+ def divide(a, b)
75
+ returm a/b
76
+ """
77
+ messages = [
78
+ {"role": "user", "content": prompt}
79
+ ]
80
+ text = tokenizer.apply_chat_template(
81
+ messages,
82
+ tokenize=False,
83
+ add_generation_prompt=True
84
+ )
85
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
86
+
87
+ generated_ids = model.generate(
88
+ **model_inputs,
89
+ max_new_tokens=1024
90
+ )
91
+ generated_ids = [
92
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
93
+ ]
94
+
95
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
96
+ ```
97
+ ## Evaluation and Performanc
98
+
99
+ | Models | HUMANEVALEDIT | CANITEDIT | AIDER | POLYGLOT |
100
+ |--------|---------------|-----------|-------|----------|
101
+ | QwenCoder-2.5-3B | 73.2 | 37.1 | 36.8 | - |
102
+ | QwenCoder-2.5-3B-LoRA | 64.6 | 36.2 | 35.8 | - |
103
+ | QwenCoder-2.5-3B-SFT | 76.2 | 32.4 | 30.1 | - |
104
+ | **NextCoder-3B** | 75.6 | 42.4 | 37.6 | - |
105
+ | QwenCoder-2.5-14B | 87.8 | 58.1 | 66.9 | 9.3 |
106
+ | QwenCoder-2.5-14B-LoRA | 78.0 | 50.9 | 66.2 | 5.3 |
107
+ | QwenCoder-2.5-14B-SFT | 79.9 | 42.4 | 36.8 | 3.1 |
108
+ | **NextCoder-14B** | 89.8 | 60.2 | 72.2 | 12.2 |
109
+ | QwenCoder-2.5-32B | **90.2** | 61.0 | 72.9 | 16.4 |
110
+ | QwenCoder-2.5-32B-LoRA | 82.3 | 52.4 | 60.2 | 6.7 |
111
+ | QwenCoder-2.5-32B-SFT | 81.7 | 49.5 | 66.9 | 8.4 |
112
+ | **NextCoder-32B** | 88.9 | **62.4** | **74.7** | **23.6** |
113
+
114
+ *Comparison of base QwenCoder-2.5 models of different sizes and their SELEKT-enhanced versions across three code editing benchmarks.*
115
+
116
+ **Detailed evaluation results are reported in this [📑 paper](https://arxiv.org/abs/2503.03656).**
117
+
118
+ ## Citation
119
+
120
+ If you find our work helpful, feel free to give us a cite.
121
+
122
+ ```
123
+ // todo
124
+ ```