Update README.md
Browse files
README.md
CHANGED
|
@@ -2,269 +2,128 @@
|
|
| 2 |
license: mit
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
-
base_model:
|
| 6 |
-
- openai-community/gpt2
|
| 7 |
-
- distilbert/distilgpt2
|
| 8 |
-
pipeline_tag: text-generation
|
| 9 |
tags:
|
| 10 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# 🧠
|
| 14 |
|
| 15 |
-
This
|
| 16 |
|
| 17 |
|
| 18 |
-
##
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
|
| 26 |
-
-
|
| 27 |
-
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
-
##
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
- 🗣️ Text generation
|
| 36 |
-
- 🎭 Emotion detection
|
| 37 |
-
- 🎯 Intent classification
|
| 38 |
-
- 📊 Sentence embedding
|
| 39 |
|
| 40 |
-
Models are stored in the `models/` directory and published to the Hugging Face Hub for scalable inference.
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
- **Description**: Pre-trained DistilGPT-2 for text generation
|
| 48 |
-
- **Task**: Text Generation
|
| 49 |
-
- **Architecture**: 6-layer transformer (82M params)
|
| 50 |
-
- **Use Case**: Default conversational model
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
### 🔹 `fine_tuned_distilgpt2_lora`
|
| 54 |
-
|
| 55 |
-
- **Description**: DistilGPT-2 fine-tuned using LoRA for mental health contexts
|
| 56 |
-
- **Training Script**: `training/finetune_distilgpt2_lora.py`
|
| 57 |
-
- **Use Case**: Therapy-specific generation
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
### 🔹 `fine_tuned_gpt2`
|
| 61 |
-
|
| 62 |
-
- **Description**: GPT-2 fine-tuned for rich and context-aware dialogues
|
| 63 |
-
- **Architecture**: GPT-2 (124M params)
|
| 64 |
-
- **Training Script**: `training/finetune_gpt2_pipeline.py`
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
### 🔹 `merged_distilgpt2`
|
| 68 |
-
|
| 69 |
-
- **Description**: Optimized DistilGPT-2 with merged fine-tuned weights
|
| 70 |
-
- **Use Case**: Fallback generation model
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
### 🔹 `gpt2`
|
| 74 |
-
|
| 75 |
-
- **Description**: Raw GPT-2 as a baseline model
|
| 76 |
-
- **Source**: Hugging Face Transformers
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
### 🔹 `emotion_classifier`
|
| 80 |
-
|
| 81 |
-
- **Task**: Emotion Classification (e.g., joy, sadness, anger)
|
| 82 |
-
- **Training Script**: `training/train_emotion_model.py`
|
| 83 |
-
- **Use Case**: Used in `app/chatbot/emotion.py`
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
### 🔹 `emotion_model`
|
| 87 |
-
|
| 88 |
-
- **Description**: Variant or backup for emotion analysis
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
### 🔹 `intent_classifier`
|
| 92 |
-
|
| 93 |
-
- **Task**: User intent detection (e.g., schedule, vent, help)
|
| 94 |
-
- **Training Script**: `training/train_intent_classifier.py`
|
| 95 |
-
- **Use Case**: `app/chatbot/intent_classifier.py`
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
### 🔹 `intent_encoder`
|
| 99 |
-
|
| 100 |
-
- **Description**: Sentence-BERT used to embed user input
|
| 101 |
-
- **Use Case**: Vector search in `app/utils/embedding_search.py`
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
### 🔹 `intent_fallback`
|
| 105 |
-
|
| 106 |
-
- **Description**: Fallback model for intent classification errors
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
### 🔹 `sentence_transformer`
|
| 110 |
-
|
| 111 |
-
- **Architecture**: Sentence-BERT (e.g., all-MiniLM-L6-v2)
|
| 112 |
-
- **Use Case**: Text embedding for similarity queries
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
## 🎯 Intended Use
|
| 116 |
-
|
| 117 |
-
These models are intended for use in:
|
| 118 |
-
|
| 119 |
-
- Conversational therapy interfaces
|
| 120 |
-
- Mental health chatbots
|
| 121 |
-
- Emotion-aware agents
|
| 122 |
-
- Intent-based routing systems
|
| 123 |
-
|
| 124 |
-
### 👥 Primary Users:
|
| 125 |
-
|
| 126 |
-
- End-users of the MindPadi mental health app
|
| 127 |
-
- Developers integrating AI into mental health tools
|
| 128 |
-
|
| 129 |
-
### 🚫 Out-of-Scope:
|
| 130 |
-
|
| 131 |
-
- Medical diagnosis
|
| 132 |
-
- Legal/financial decision-making
|
| 133 |
-
- Non-mental health chatbots without validation
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
## 🛠 Training Details
|
| 137 |
-
|
| 138 |
-
### 🧾 Datasets
|
| 139 |
-
|
| 140 |
-
- Location: `training/datasets/`
|
| 141 |
-
- Intents: Stored in `data/processed_intents.json`
|
| 142 |
-
- Processing scripts: `process_conversation_data.py`, `convert_intents_format.py`
|
| 143 |
-
|
| 144 |
-
### 💻 Environment
|
| 145 |
-
|
| 146 |
-
- Hardware: NVIDIA GPUs (local/cloud)
|
| 147 |
-
- Pretrained models: from Hugging Face
|
| 148 |
-
- Fine-tuned models: custom scripts
|
| 149 |
-
|
| 150 |
-
### 🔧 Scripts Used
|
| 151 |
-
|
| 152 |
-
| Model | Script |
|
| 153 |
-
|-------|--------|
|
| 154 |
-
| LoRA GPT-2 | `training/finetune_distilgpt2_lora.py` |
|
| 155 |
-
| Fine-tuned GPT-2 | `training/finetune_gpt2_pipeline.py` |
|
| 156 |
-
| Emotion Classifier | `training/train_emotion_model.py` |
|
| 157 |
-
| Intent Classifier | `training/train_intent_classifier.py` |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
## 📊 Evaluation
|
| 161 |
-
|
| 162 |
-
### ✅ Metrics
|
| 163 |
-
|
| 164 |
-
- **Text Gen**: Perplexity, BLEU
|
| 165 |
-
- **Classification**: Accuracy, F1-score
|
| 166 |
-
|
| 167 |
-
### 📈 Results
|
| 168 |
-
|
| 169 |
-
- Emotion classifier: High accuracy
|
| 170 |
-
- Fine-tuned GPT models: Better than baseline
|
| 171 |
-
- Evaluation logs: `logs/training.log`, TensorBoard
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
## ⚠ Limitations
|
| 175 |
-
|
| 176 |
-
- **Bias**: Possible due to training data
|
| 177 |
-
- **Generalization**: May fail on out-of-domain text
|
| 178 |
-
- **Language**: Only English supported
|
| 179 |
-
- **Inference Cost**: Large models require GPU memory
|
| 180 |
-
- **Safety**: Human monitoring is recommended
|
| 181 |
|
|
|
|
| 182 |
|
| 183 |
-
|
| 184 |
|
| 185 |
-
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
pip install transformers huggingface_hub requests
|
| 191 |
-
```
|
| 192 |
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
###
|
| 195 |
|
| 196 |
```python
|
| 197 |
-
from
|
| 198 |
-
|
| 199 |
-
model = AutoModelForCausalLM.from_pretrained("mindpadi/distilgpt2")
|
| 200 |
-
tokenizer = AutoTokenizer.from_pretrained("mindpadi/distilgpt2")
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
|
|
|
| 204 |
|
| 205 |
-
print(
|
| 206 |
```
|
| 207 |
|
| 208 |
|
| 209 |
-
### 😢 Example: Emotion Classification
|
| 210 |
|
| 211 |
-
|
| 212 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
|
| 218 |
-
outputs = model(**inputs)
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
|
| 223 |
|
| 224 |
-
### 🌐 Using Inference Endpoints
|
| 225 |
|
| 226 |
-
|
| 227 |
-
import requests
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
"Content-Type": "application/json"
|
| 233 |
-
}
|
| 234 |
-
payload = {"inputs": "What should I do when I'm anxious?"}
|
| 235 |
|
| 236 |
-
res = requests.post(url, json=payload, headers=headers)
|
| 237 |
-
print(res.json())
|
| 238 |
-
```
|
| 239 |
|
| 240 |
|
| 241 |
-
|
| 242 |
|
| 243 |
-
|
| 244 |
-
| ---------------------------------- | ------------------------------------- |
|
| 245 |
-
| `app/chatbot/core.py` | Text generation |
|
| 246 |
-
| `app/chatbot/emotion.py` | `emotion_classifier` |
|
| 247 |
-
| `app/chatbot/intent_classifier.py` | `intent_classifier`, `intent_encoder` |
|
| 248 |
-
| `app/utils/embedding_search.py` | `sentence_transformer` |
|
| 249 |
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
## 🧩 Ethical Considerations
|
| 252 |
|
| 253 |
-
* **Supportive, Not Diagnostic**: Not a replacement for therapy
|
| 254 |
-
* **Bias Risk**: Model outputs may contain implicit bias
|
| 255 |
-
* **Data Privacy**: User data must be anonymized
|
| 256 |
-
* **Transparency**: Clearly inform users they're chatting with AI
|
| 257 |
|
|
|
|
| 258 |
|
| 259 |
-
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
* 📧 Email: [[email protected]]([email protected])
|
| 262 |
-
* 🔗 GitHub: [MindPadi](https://github.com/MindPadi)
|
| 263 |
-
* 🤗 Hugging Face: [https://huggingface.co/mindpadi](https://huggingface.co/mindpadi)
|
| 264 |
|
| 265 |
|
| 266 |
## 📄 License
|
| 267 |
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
*
|
|
|
|
| 2 |
license: mit
|
| 3 |
language:
|
| 4 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
tags:
|
| 6 |
+
- intent-classification
|
| 7 |
+
- emotion-detection
|
| 8 |
+
- mental-health
|
| 9 |
+
- lstm
|
| 10 |
+
- sentence-transformers
|
| 11 |
+
- sklearn
|
| 12 |
+
pipeline_tag: text-classification
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# 🧠 MindPadi: Hybrid Classifier Suite
|
| 16 |
|
| 17 |
+
This repository contains auxiliary models for intent and emotion classification used in the **MindPadi** mental health assistant. These models include rule-based, ML-based, and deep learning classifiers trained to detect emotional states, user intent, and conversational cues.
|
| 18 |
|
| 19 |
|
| 20 |
+
## 📦 Files
|
| 21 |
|
| 22 |
+
| File | Description |
|
| 23 |
+
|-------------------------------|----------------------------------------------------------|
|
| 24 |
+
| `intent_clf.joblib` | scikit-learn pipeline for intent classification (TF-IDF) |
|
| 25 |
+
| `intent_sentence_classifier.pkl` | Sentence-level intent classifier (pickle) |
|
| 26 |
+
| `lstm_tfidf.h5` | LSTM model trained on TF-IDF vectors |
|
| 27 |
+
| `lstm_bert.h5` | LSTM model trained on BERT embeddings |
|
| 28 |
+
| `tfidf_vectorizer.pkl` | TF-IDF vectorizer for preprocessing text |
|
| 29 |
+
| `tfidf_embeddings.pkl` | Cached TF-IDF embeddings for faster lookup |
|
| 30 |
+
| `bert_embeddings.npy` | Precomputed BERT embeddings used in training/testing |
|
| 31 |
+
| `lstm_accuracy_tfidf.png` | Evaluation plot (TF-IDF model) |
|
| 32 |
+
| `lstm_accuracy_bert.png` | Evaluation plot (BERT model) |
|
| 33 |
+
| `model_configs/` | JSON configs for training and architecture |
|
| 34 |
|
| 35 |
|
| 36 |
+
## 🎯 Tasks Supported
|
| 37 |
|
| 38 |
+
- **Intent Classification**: Understand what the user is trying to communicate.
|
| 39 |
+
- **Emotion Detection**: Identify the emotional tone (e.g., sad, angry).
|
| 40 |
+
- **Embedding Generation**: Support vector similarity or hybrid routing.
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
| 43 |
|
| 44 |
+
## 🔬 Model Overview
|
| 45 |
|
| 46 |
+
| Model Type | Framework | Notes |
|
| 47 |
+
|----------------|-------------|----------------------------------------|
|
| 48 |
+
| LSTM + TF-IDF | Keras | Traditional pipeline with good generalization |
|
| 49 |
+
| LSTM + BERT | Keras | Handles contextual sentence meanings |
|
| 50 |
+
| TF-IDF + SVM | scikit-learn | Lightweight and interpretable intent routing |
|
| 51 |
+
| Sentence Classifier | scikit-learn | Quick rule or decision-tree model for sentence-level labels |
|
| 52 |
|
| 53 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
## 🛠️ Usage Example
|
| 56 |
|
| 57 |
+
### Intent Prediction (Joblib)
|
| 58 |
|
| 59 |
+
```python
|
| 60 |
+
from joblib import load
|
| 61 |
|
| 62 |
+
clf = load("intent_clf.joblib")
|
| 63 |
+
text = ["I feel really anxious today"]
|
| 64 |
+
pred = clf.predict(text)
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
print("Intent:", pred[0])
|
| 67 |
+
````
|
| 68 |
|
| 69 |
+
### LSTM Emotion Prediction
|
| 70 |
|
| 71 |
```python
|
| 72 |
+
from tensorflow.keras.models import load_model
|
| 73 |
+
import numpy as np
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
model = load_model("lstm_bert.h5")
|
| 76 |
+
embeddings = np.load("bert_embeddings.npy") # assuming aligned with test set
|
| 77 |
+
output = model.predict(embeddings)
|
| 78 |
|
| 79 |
+
print("Predicted emotion class:", output.argmax(axis=1))
|
| 80 |
```
|
| 81 |
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
+
## 📊 Evaluation
|
|
|
|
| 85 |
|
| 86 |
+
| Model | Accuracy | Dataset Size | Notes |
|
| 87 |
+
| ------------------- | -------- | ------------ | -------------------------------- |
|
| 88 |
+
| `lstm_bert.h5` | \~88% | 10,000+ | Best for nuanced emotional input |
|
| 89 |
+
| `lstm_tfidf.h5` | \~83% | 10,000+ | Lighter, faster |
|
| 90 |
+
| `intent_clf.joblib` | \~90% | 8,000+ | Works well with short queries |
|
| 91 |
|
| 92 |
+
Evaluation visualizations:
|
|
|
|
| 93 |
|
| 94 |
+
* 
|
| 95 |
+
* 
|
| 96 |
|
| 97 |
|
|
|
|
| 98 |
|
| 99 |
+
## ⚠️ Limitations
|
|
|
|
| 100 |
|
| 101 |
+
* English only
|
| 102 |
+
* May misclassify ambiguous or sarcastic phrases
|
| 103 |
+
* LSTM models require matching vectorizer or embeddings
|
|
|
|
|
|
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
+
## 🧩 Integration
|
| 108 |
|
| 109 |
+
These models are invoked in:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
* `app/chatbot/intent_classifier.py`
|
| 112 |
+
* `app/chatbot/emotion.py`
|
| 113 |
+
* `app/utils/embedding_search.py`
|
| 114 |
|
|
|
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
## 🧠 Intended Use
|
| 118 |
|
| 119 |
+
* Mental health journaling feedback
|
| 120 |
+
* Chatbot-based emotion understanding
|
| 121 |
+
* Offline fallback for heavy transformer models
|
| 122 |
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
## 📄 License
|
| 126 |
|
| 127 |
+
MIT License – free for commercial and research use.
|
| 128 |
+
|
| 129 |
+
*Last updated: May 6, 2025*
|