Delete modeling_dream.py
Browse files- modeling_dream.py +0 -824
modeling_dream.py
DELETED
@@ -1,824 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
-
# and OPT and Qwen implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT and Qwen used by the Meta AI and Qwen team that trained the model.
|
8 |
-
#
|
9 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
-
# you may not use this file except in compliance with the License.
|
11 |
-
# You may obtain a copy of the License at
|
12 |
-
#
|
13 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
-
#
|
15 |
-
# Unless required by applicable law or agreed to in writing, software
|
16 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
-
# See the License for the specific language governing permissions and
|
19 |
-
# limitations under the License.
|
20 |
-
"""PyTorch Dream model."""
|
21 |
-
|
22 |
-
import math
|
23 |
-
from typing import List, Optional, Tuple, Union
|
24 |
-
import os
|
25 |
-
import torch
|
26 |
-
import torch.utils.checkpoint
|
27 |
-
from torch import nn
|
28 |
-
|
29 |
-
from transformers.activations import ACT2FN
|
30 |
-
from transformers.cache_utils import Cache, DynamicCache
|
31 |
-
from transformers.modeling_outputs import (
|
32 |
-
BaseModelOutput,
|
33 |
-
MaskedLMOutput,
|
34 |
-
)
|
35 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
36 |
-
from transformers.modeling_utils import PreTrainedModel
|
37 |
-
from transformers.utils import (
|
38 |
-
add_start_docstrings,
|
39 |
-
add_start_docstrings_to_model_forward,
|
40 |
-
is_flash_attn_2_available,
|
41 |
-
is_flash_attn_greater_or_equal_2_10,
|
42 |
-
logging,
|
43 |
-
)
|
44 |
-
from transformers import PretrainedConfig
|
45 |
-
from .configuration_dream import DreamConfig
|
46 |
-
from .generation_utils import DreamGenerationMixin, DreamGenerationConfig
|
47 |
-
|
48 |
-
if is_flash_attn_2_available():
|
49 |
-
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
50 |
-
|
51 |
-
|
52 |
-
logger = logging.get_logger(__name__)
|
53 |
-
|
54 |
-
|
55 |
-
_CHECKPOINT_FOR_DOC = "Dream-7B"
|
56 |
-
_CONFIG_FOR_DOC = "DreamConfig"
|
57 |
-
|
58 |
-
|
59 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Dream
|
60 |
-
class DreamRMSNorm(nn.Module):
|
61 |
-
def __init__(self, hidden_size, eps=1e-6):
|
62 |
-
"""
|
63 |
-
DreamRMSNorm is equivalent to T5LayerNorm
|
64 |
-
"""
|
65 |
-
super().__init__()
|
66 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
67 |
-
self.variance_epsilon = eps
|
68 |
-
|
69 |
-
def forward(self, hidden_states):
|
70 |
-
input_dtype = hidden_states.dtype
|
71 |
-
hidden_states = hidden_states.to(torch.float32)
|
72 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
73 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
74 |
-
return self.weight * hidden_states.to(input_dtype)
|
75 |
-
|
76 |
-
def extra_repr(self):
|
77 |
-
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
78 |
-
|
79 |
-
|
80 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Dream
|
81 |
-
class DreamRotaryEmbedding(nn.Module):
|
82 |
-
def __init__(
|
83 |
-
self,
|
84 |
-
dim=None,
|
85 |
-
max_position_embeddings=2048,
|
86 |
-
base=10000,
|
87 |
-
device=None,
|
88 |
-
scaling_factor=1.0,
|
89 |
-
rope_type="default",
|
90 |
-
config: Optional[DreamConfig] = None,
|
91 |
-
):
|
92 |
-
super().__init__()
|
93 |
-
# TODO (joao): remove the `if` below, only used for BC
|
94 |
-
self.rope_kwargs = {}
|
95 |
-
if config is None:
|
96 |
-
logger.warning_once(
|
97 |
-
"`DreamRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
98 |
-
"`config` argument. All other arguments will be removed in v4.46"
|
99 |
-
)
|
100 |
-
self.rope_kwargs = {
|
101 |
-
"rope_type": rope_type,
|
102 |
-
"factor": scaling_factor,
|
103 |
-
"dim": dim,
|
104 |
-
"base": base,
|
105 |
-
"max_position_embeddings": max_position_embeddings,
|
106 |
-
}
|
107 |
-
self.rope_type = rope_type
|
108 |
-
self.max_seq_len_cached = max_position_embeddings
|
109 |
-
self.original_max_seq_len = max_position_embeddings
|
110 |
-
else:
|
111 |
-
# BC: "rope_type" was originally "type"
|
112 |
-
if config.rope_scaling is not None:
|
113 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
114 |
-
else:
|
115 |
-
self.rope_type = "default"
|
116 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
117 |
-
self.original_max_seq_len = config.max_position_embeddings
|
118 |
-
|
119 |
-
self.config = config
|
120 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
121 |
-
|
122 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
123 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
124 |
-
self.original_inv_freq = self.inv_freq
|
125 |
-
|
126 |
-
def reset_parameters(self):
|
127 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, self.inv_freq.device, **self.rope_kwargs)
|
128 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
129 |
-
self.original_inv_freq = self.inv_freq
|
130 |
-
|
131 |
-
|
132 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
133 |
-
"""
|
134 |
-
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
135 |
-
1 - growing beyond the cached sequence length (allow scaling)
|
136 |
-
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
137 |
-
"""
|
138 |
-
seq_len = torch.max(position_ids) + 1
|
139 |
-
if seq_len > self.max_seq_len_cached: # growth
|
140 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(
|
141 |
-
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
142 |
-
)
|
143 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
144 |
-
self.max_seq_len_cached = seq_len
|
145 |
-
|
146 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
147 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
148 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
149 |
-
|
150 |
-
@torch.no_grad()
|
151 |
-
def forward(self, x, position_ids):
|
152 |
-
if "dynamic" in self.rope_type:
|
153 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
154 |
-
|
155 |
-
# Core RoPE block
|
156 |
-
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
157 |
-
position_ids_expanded = position_ids[:, None, :].float()
|
158 |
-
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
159 |
-
device_type = x.device.type
|
160 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
161 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
162 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
163 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
164 |
-
cos = emb.cos()
|
165 |
-
sin = emb.sin()
|
166 |
-
|
167 |
-
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
168 |
-
cos = cos * self.attention_scaling
|
169 |
-
sin = sin * self.attention_scaling
|
170 |
-
|
171 |
-
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
172 |
-
|
173 |
-
|
174 |
-
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
175 |
-
def rotate_half(x):
|
176 |
-
"""Rotates half the hidden dims of the input."""
|
177 |
-
x1 = x[..., : x.shape[-1] // 2]
|
178 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
179 |
-
return torch.cat((-x2, x1), dim=-1)
|
180 |
-
|
181 |
-
|
182 |
-
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
183 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
184 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
185 |
-
|
186 |
-
Args:
|
187 |
-
q (`torch.Tensor`): The query tensor.
|
188 |
-
k (`torch.Tensor`): The key tensor.
|
189 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
190 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
191 |
-
position_ids (`torch.Tensor`, *optional*):
|
192 |
-
Deprecated and unused.
|
193 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
194 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
195 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
196 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
197 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
198 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
199 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
200 |
-
Returns:
|
201 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
202 |
-
"""
|
203 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
204 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
205 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
206 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
207 |
-
return q_embed, k_embed
|
208 |
-
|
209 |
-
|
210 |
-
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Dream
|
211 |
-
class DreamMLP(nn.Module):
|
212 |
-
def __init__(self, config):
|
213 |
-
super().__init__()
|
214 |
-
self.hidden_size = config.hidden_size
|
215 |
-
self.intermediate_size = config.intermediate_size
|
216 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
217 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
218 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
219 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
220 |
-
|
221 |
-
def forward(self, hidden_state):
|
222 |
-
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
223 |
-
|
224 |
-
|
225 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
226 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
227 |
-
"""
|
228 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
229 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
230 |
-
"""
|
231 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
232 |
-
if n_rep == 1:
|
233 |
-
return hidden_states
|
234 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
235 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
236 |
-
|
237 |
-
|
238 |
-
class DreamAttention(nn.Module):
|
239 |
-
"""
|
240 |
-
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
241 |
-
and "Generating Long Sequences with Sparse Transformers".
|
242 |
-
"""
|
243 |
-
|
244 |
-
def __init__(self, config: DreamConfig, layer_idx: Optional[int] = None):
|
245 |
-
super().__init__()
|
246 |
-
self.config = config
|
247 |
-
self.layer_idx = layer_idx
|
248 |
-
if layer_idx is None:
|
249 |
-
logger.warning_once(
|
250 |
-
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
251 |
-
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
252 |
-
"when creating this class."
|
253 |
-
)
|
254 |
-
|
255 |
-
self.hidden_size = config.hidden_size
|
256 |
-
self.num_heads = config.num_attention_heads
|
257 |
-
self.head_dim = self.hidden_size // self.num_heads
|
258 |
-
self.num_key_value_heads = config.num_key_value_heads
|
259 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
260 |
-
self.max_position_embeddings = config.max_position_embeddings
|
261 |
-
self.rope_theta = config.rope_theta
|
262 |
-
self.is_causal = False
|
263 |
-
self.attention_dropout = config.attention_dropout
|
264 |
-
|
265 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
266 |
-
raise ValueError(
|
267 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
268 |
-
f" and `num_heads`: {self.num_heads})."
|
269 |
-
)
|
270 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
271 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
272 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
273 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
274 |
-
|
275 |
-
self.rotary_emb = DreamRotaryEmbedding(config=self.config)
|
276 |
-
|
277 |
-
def forward(
|
278 |
-
self,
|
279 |
-
hidden_states: torch.Tensor,
|
280 |
-
attention_mask: Optional[torch.Tensor] = None,
|
281 |
-
position_ids: Optional[torch.LongTensor] = None,
|
282 |
-
past_key_value: Optional[Cache] = None,
|
283 |
-
output_attentions: bool = False,
|
284 |
-
use_cache: bool = False,
|
285 |
-
cache_position: Optional[torch.LongTensor] = None,
|
286 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
287 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
288 |
-
bsz, q_len, _ = hidden_states.size()
|
289 |
-
|
290 |
-
query_states = self.q_proj(hidden_states)
|
291 |
-
key_states = self.k_proj(hidden_states)
|
292 |
-
value_states = self.v_proj(hidden_states)
|
293 |
-
|
294 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
295 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
296 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
297 |
-
|
298 |
-
if position_embeddings is None:
|
299 |
-
logger.warning_once(
|
300 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
301 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
302 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
303 |
-
"removed and `position_embeddings` will be mandatory."
|
304 |
-
)
|
305 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
306 |
-
else:
|
307 |
-
cos, sin = position_embeddings
|
308 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
309 |
-
|
310 |
-
if past_key_value is not None:
|
311 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
312 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
313 |
-
|
314 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
315 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
316 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
317 |
-
|
318 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
319 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
320 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
321 |
-
attn_weights = attn_weights + causal_mask
|
322 |
-
|
323 |
-
# upcast attention to fp32
|
324 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
325 |
-
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
326 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
327 |
-
|
328 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
329 |
-
raise ValueError(
|
330 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
331 |
-
f" {attn_output.size()}"
|
332 |
-
)
|
333 |
-
|
334 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
335 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
336 |
-
|
337 |
-
attn_output = self.o_proj(attn_output)
|
338 |
-
|
339 |
-
if not output_attentions:
|
340 |
-
attn_weights = None
|
341 |
-
|
342 |
-
return attn_output, attn_weights, past_key_value
|
343 |
-
|
344 |
-
|
345 |
-
class DreamSdpaAttention(DreamAttention):
|
346 |
-
"""
|
347 |
-
Dream attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
348 |
-
`DreamAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
349 |
-
SDPA API.
|
350 |
-
"""
|
351 |
-
|
352 |
-
# Adapted from DreamAttention.forward
|
353 |
-
def forward(
|
354 |
-
self,
|
355 |
-
hidden_states: torch.Tensor,
|
356 |
-
attention_mask: Optional[torch.Tensor] = None,
|
357 |
-
position_ids: Optional[torch.LongTensor] = None,
|
358 |
-
past_key_value: Optional[Cache] = None,
|
359 |
-
output_attentions: bool = False,
|
360 |
-
use_cache: bool = False,
|
361 |
-
cache_position: Optional[torch.LongTensor] = None,
|
362 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
363 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
364 |
-
if output_attentions:
|
365 |
-
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
366 |
-
logger.warning_once(
|
367 |
-
"DreamModel is using DreamSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
368 |
-
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
369 |
-
)
|
370 |
-
return super().forward(
|
371 |
-
hidden_states=hidden_states,
|
372 |
-
attention_mask=attention_mask,
|
373 |
-
position_ids=position_ids,
|
374 |
-
past_key_value=past_key_value,
|
375 |
-
output_attentions=output_attentions,
|
376 |
-
use_cache=use_cache,
|
377 |
-
)
|
378 |
-
|
379 |
-
bsz, q_len, _ = hidden_states.size()
|
380 |
-
|
381 |
-
query_states = self.q_proj(hidden_states)
|
382 |
-
key_states = self.k_proj(hidden_states)
|
383 |
-
value_states = self.v_proj(hidden_states)
|
384 |
-
|
385 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
386 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
387 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
388 |
-
|
389 |
-
if position_embeddings is None:
|
390 |
-
logger.warning_once(
|
391 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
392 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
393 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
394 |
-
"removed and `position_embeddings` will be mandatory."
|
395 |
-
)
|
396 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
397 |
-
else:
|
398 |
-
cos, sin = position_embeddings
|
399 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
400 |
-
|
401 |
-
if past_key_value is not None:
|
402 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
403 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
404 |
-
|
405 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
406 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
407 |
-
|
408 |
-
# causal_mask = attention_mask
|
409 |
-
# if attention_mask is not None: # no matter the length, we just slice it
|
410 |
-
# causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
411 |
-
|
412 |
-
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
413 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
414 |
-
if query_states.device.type == "cuda" and attention_mask is not None:
|
415 |
-
query_states = query_states.contiguous()
|
416 |
-
key_states = key_states.contiguous()
|
417 |
-
value_states = value_states.contiguous()
|
418 |
-
|
419 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
420 |
-
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
421 |
-
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
422 |
-
# is_causal = True if causal_mask is None and q_len > 1 else False
|
423 |
-
|
424 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
425 |
-
query_states,
|
426 |
-
key_states,
|
427 |
-
value_states,
|
428 |
-
attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None,
|
429 |
-
dropout_p=self.attention_dropout if self.training else 0.0,
|
430 |
-
is_causal=False, # hard coded
|
431 |
-
)
|
432 |
-
|
433 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
434 |
-
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
435 |
-
|
436 |
-
attn_output = self.o_proj(attn_output)
|
437 |
-
|
438 |
-
return attn_output, None, past_key_value
|
439 |
-
|
440 |
-
|
441 |
-
class DreamDecoderLayer(nn.Module):
|
442 |
-
def __init__(self, config: DreamConfig, layer_idx: int):
|
443 |
-
super().__init__()
|
444 |
-
self.hidden_size = config.hidden_size
|
445 |
-
|
446 |
-
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
447 |
-
logger.warning_once(
|
448 |
-
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
449 |
-
"unexpected results may be encountered."
|
450 |
-
)
|
451 |
-
|
452 |
-
# self.self_attn = Dream_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
453 |
-
self.self_attn = DreamSdpaAttention(config, layer_idx)
|
454 |
-
|
455 |
-
self.mlp = DreamMLP(config)
|
456 |
-
self.input_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
457 |
-
self.post_attention_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
458 |
-
|
459 |
-
def forward(
|
460 |
-
self,
|
461 |
-
hidden_states: torch.Tensor,
|
462 |
-
attention_mask: Optional[torch.Tensor] = None,
|
463 |
-
position_ids: Optional[torch.LongTensor] = None,
|
464 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
465 |
-
output_attentions: Optional[bool] = False,
|
466 |
-
use_cache: Optional[bool] = False,
|
467 |
-
cache_position: Optional[torch.LongTensor] = None,
|
468 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
469 |
-
**kwargs,
|
470 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
471 |
-
"""
|
472 |
-
Args:
|
473 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
474 |
-
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
475 |
-
`(batch, sequence_length)` where padding elements are indicated by 0.
|
476 |
-
output_attentions (`bool`, *optional*):
|
477 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
478 |
-
returned tensors for more detail.
|
479 |
-
use_cache (`bool`, *optional*):
|
480 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
481 |
-
(see `past_key_values`).
|
482 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
483 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
484 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
485 |
-
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
486 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
487 |
-
with `head_dim` being the embedding dimension of each attention head.
|
488 |
-
kwargs (`dict`, *optional*):
|
489 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
490 |
-
into the model
|
491 |
-
"""
|
492 |
-
|
493 |
-
residual = hidden_states
|
494 |
-
|
495 |
-
hidden_states = self.input_layernorm(hidden_states)
|
496 |
-
|
497 |
-
# Self Attention
|
498 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
499 |
-
hidden_states=hidden_states,
|
500 |
-
attention_mask=attention_mask,
|
501 |
-
position_ids=position_ids,
|
502 |
-
past_key_value=past_key_value,
|
503 |
-
output_attentions=output_attentions,
|
504 |
-
use_cache=use_cache,
|
505 |
-
cache_position=cache_position,
|
506 |
-
position_embeddings=position_embeddings,
|
507 |
-
)
|
508 |
-
hidden_states = residual + hidden_states
|
509 |
-
|
510 |
-
# Fully Connected
|
511 |
-
residual = hidden_states
|
512 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
513 |
-
hidden_states = self.mlp(hidden_states)
|
514 |
-
hidden_states = residual + hidden_states
|
515 |
-
|
516 |
-
outputs = (hidden_states,)
|
517 |
-
|
518 |
-
if output_attentions:
|
519 |
-
outputs += (self_attn_weights,)
|
520 |
-
|
521 |
-
if use_cache:
|
522 |
-
outputs += (present_key_value,)
|
523 |
-
|
524 |
-
return outputs
|
525 |
-
|
526 |
-
class DreamPreTrainedModel(PreTrainedModel):
|
527 |
-
config_class = DreamConfig
|
528 |
-
base_model_prefix = "model"
|
529 |
-
supports_gradient_checkpointing = True
|
530 |
-
_no_split_modules = ["DreamDecoderLayer"]
|
531 |
-
_skip_keys_device_placement = "past_key_values"
|
532 |
-
_supports_flash_attn_2 = True
|
533 |
-
_supports_sdpa = True
|
534 |
-
_supports_cache_class = True
|
535 |
-
_supports_quantized_cache = True
|
536 |
-
_supports_static_cache = True
|
537 |
-
|
538 |
-
def _init_weights(self, module):
|
539 |
-
std = self.config.initializer_range
|
540 |
-
if isinstance(module, nn.Linear):
|
541 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
542 |
-
if module.bias is not None:
|
543 |
-
module.bias.data.zero_()
|
544 |
-
elif isinstance(module, nn.Embedding):
|
545 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
546 |
-
if module.padding_idx is not None:
|
547 |
-
module.weight.data[module.padding_idx].zero_()
|
548 |
-
|
549 |
-
@classmethod
|
550 |
-
def from_pretrained(
|
551 |
-
cls,
|
552 |
-
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
553 |
-
*model_args,
|
554 |
-
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
555 |
-
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
556 |
-
ignore_mismatched_sizes: bool = False,
|
557 |
-
force_download: bool = False,
|
558 |
-
local_files_only: bool = False,
|
559 |
-
token: Optional[Union[str, bool]] = None,
|
560 |
-
revision: str = "main",
|
561 |
-
use_safetensors: Optional[bool] = None,
|
562 |
-
weights_only: bool = True,
|
563 |
-
**kwargs,
|
564 |
-
):
|
565 |
-
_model = super().from_pretrained(
|
566 |
-
pretrained_model_name_or_path,
|
567 |
-
*model_args,
|
568 |
-
config=config,
|
569 |
-
cache_dir=cache_dir,
|
570 |
-
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
571 |
-
force_download=force_download,
|
572 |
-
local_files_only=local_files_only,
|
573 |
-
token=token,
|
574 |
-
revision=revision,
|
575 |
-
use_safetensors=use_safetensors,
|
576 |
-
weights_only=weights_only,
|
577 |
-
**kwargs,
|
578 |
-
)
|
579 |
-
# NOTE(Lin): we need to override the generation config
|
580 |
-
# because the generation config loaded in `from_pretrained`
|
581 |
-
# does not include all the attributes of DreamGenerationConfig
|
582 |
-
resume_download = kwargs.get("resume_download", None)
|
583 |
-
proxies = kwargs.get("proxies", None)
|
584 |
-
subfolder = kwargs.get("subfolder", "")
|
585 |
-
from_auto_class = kwargs.get("_from_auto", False)
|
586 |
-
from_pipeline = kwargs.get("_from_pipeline", None)
|
587 |
-
_model.generation_config = DreamGenerationConfig.from_pretrained(
|
588 |
-
pretrained_model_name_or_path,
|
589 |
-
cache_dir=cache_dir,
|
590 |
-
force_download=force_download,
|
591 |
-
resume_download=resume_download,
|
592 |
-
proxies=proxies,
|
593 |
-
local_files_only=local_files_only,
|
594 |
-
token=token,
|
595 |
-
revision=revision,
|
596 |
-
subfolder=subfolder,
|
597 |
-
_from_auto=from_auto_class,
|
598 |
-
_from_pipeline=from_pipeline,
|
599 |
-
)
|
600 |
-
return _model
|
601 |
-
|
602 |
-
class DreamBaseModel(DreamPreTrainedModel):
|
603 |
-
"""
|
604 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DreamDecoderLayer`]
|
605 |
-
|
606 |
-
Args:
|
607 |
-
config: DreamConfig
|
608 |
-
"""
|
609 |
-
|
610 |
-
def __init__(self, config: DreamConfig):
|
611 |
-
super().__init__(config)
|
612 |
-
self.padding_idx = config.pad_token_id
|
613 |
-
self.vocab_size = config.vocab_size
|
614 |
-
|
615 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
616 |
-
self.layers = nn.ModuleList(
|
617 |
-
[DreamDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
618 |
-
)
|
619 |
-
self._attn_implementation = config._attn_implementation
|
620 |
-
self.norm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
621 |
-
self.rotary_emb = DreamRotaryEmbedding(config=config)
|
622 |
-
|
623 |
-
self.gradient_checkpointing = False
|
624 |
-
# Initialize weights and apply final processing
|
625 |
-
self.post_init()
|
626 |
-
|
627 |
-
def get_input_embeddings(self):
|
628 |
-
return self.embed_tokens
|
629 |
-
|
630 |
-
def set_input_embeddings(self, value):
|
631 |
-
self.embed_tokens = value
|
632 |
-
|
633 |
-
def forward(
|
634 |
-
self,
|
635 |
-
input_ids: torch.LongTensor = None,
|
636 |
-
attention_mask: Optional[torch.Tensor] = None,
|
637 |
-
position_ids: Optional[torch.LongTensor] = None,
|
638 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
639 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
640 |
-
use_cache: Optional[bool] = None,
|
641 |
-
output_attentions: Optional[bool] = None,
|
642 |
-
output_hidden_states: Optional[bool] = None,
|
643 |
-
return_dict: Optional[bool] = None,
|
644 |
-
cache_position: Optional[torch.LongTensor] = None,
|
645 |
-
) -> Union[Tuple, BaseModelOutput]:
|
646 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
647 |
-
output_hidden_states = (
|
648 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
649 |
-
)
|
650 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
651 |
-
|
652 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
653 |
-
|
654 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
655 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
656 |
-
|
657 |
-
if self.gradient_checkpointing and self.training:
|
658 |
-
if use_cache:
|
659 |
-
logger.warning_once(
|
660 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
661 |
-
)
|
662 |
-
use_cache = False
|
663 |
-
|
664 |
-
if inputs_embeds is None:
|
665 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
666 |
-
|
667 |
-
if use_cache and past_key_values is None:
|
668 |
-
past_key_values = DynamicCache()
|
669 |
-
|
670 |
-
if cache_position is None:
|
671 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
672 |
-
cache_position = torch.arange(
|
673 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
674 |
-
)
|
675 |
-
|
676 |
-
if position_ids is None:
|
677 |
-
position_ids = cache_position.unsqueeze(0)
|
678 |
-
|
679 |
-
hidden_states = inputs_embeds
|
680 |
-
|
681 |
-
# create position embeddings to be shared across the decoder layers
|
682 |
-
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
683 |
-
|
684 |
-
# decoder layers
|
685 |
-
all_hidden_states = () if output_hidden_states else None
|
686 |
-
all_self_attns = () if output_attentions else None
|
687 |
-
|
688 |
-
for decoder_layer in self.layers:
|
689 |
-
if output_hidden_states:
|
690 |
-
all_hidden_states += (hidden_states,)
|
691 |
-
|
692 |
-
if self.gradient_checkpointing and self.training:
|
693 |
-
layer_outputs = self._gradient_checkpointing_func(
|
694 |
-
decoder_layer.__call__,
|
695 |
-
hidden_states,
|
696 |
-
attention_mask,
|
697 |
-
position_ids,
|
698 |
-
past_key_values,
|
699 |
-
output_attentions,
|
700 |
-
use_cache,
|
701 |
-
cache_position,
|
702 |
-
position_embeddings,
|
703 |
-
)
|
704 |
-
else:
|
705 |
-
layer_outputs = decoder_layer(
|
706 |
-
hidden_states,
|
707 |
-
attention_mask=attention_mask,
|
708 |
-
position_ids=position_ids,
|
709 |
-
past_key_value=past_key_values,
|
710 |
-
output_attentions=output_attentions,
|
711 |
-
use_cache=use_cache,
|
712 |
-
cache_position=cache_position,
|
713 |
-
position_embeddings=position_embeddings,
|
714 |
-
)
|
715 |
-
|
716 |
-
hidden_states = layer_outputs[0]
|
717 |
-
|
718 |
-
if output_attentions:
|
719 |
-
all_self_attns += (layer_outputs[1],)
|
720 |
-
|
721 |
-
hidden_states = self.norm(hidden_states)
|
722 |
-
|
723 |
-
# add hidden states from the last decoder layer
|
724 |
-
if output_hidden_states:
|
725 |
-
all_hidden_states += (hidden_states,)
|
726 |
-
|
727 |
-
if not return_dict:
|
728 |
-
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns] if v is not None)
|
729 |
-
return BaseModelOutput(
|
730 |
-
last_hidden_state=hidden_states,
|
731 |
-
hidden_states=all_hidden_states,
|
732 |
-
attentions=all_self_attns,
|
733 |
-
)
|
734 |
-
|
735 |
-
|
736 |
-
class DreamModel(DreamGenerationMixin, DreamPreTrainedModel):
|
737 |
-
_tied_weights_keys = ["lm_head.weight"]
|
738 |
-
|
739 |
-
def __init__(self, config):
|
740 |
-
super().__init__(config)
|
741 |
-
self.model = DreamBaseModel(config)
|
742 |
-
self.vocab_size = config.vocab_size
|
743 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
744 |
-
|
745 |
-
# Initialize weights and apply final processing
|
746 |
-
self.post_init()
|
747 |
-
|
748 |
-
def reset_rope_parameters(self):
|
749 |
-
self.model.rotary_emb.reset_parameters()
|
750 |
-
for layer in self.model.layers:
|
751 |
-
layer.self_attn.rotary_emb.reset_parameters()
|
752 |
-
|
753 |
-
def get_input_embeddings(self):
|
754 |
-
return self.model.embed_tokens
|
755 |
-
|
756 |
-
def set_input_embeddings(self, value):
|
757 |
-
self.model.embed_tokens = value
|
758 |
-
|
759 |
-
def get_output_embeddings(self):
|
760 |
-
return self.lm_head
|
761 |
-
|
762 |
-
def set_output_embeddings(self, new_embeddings):
|
763 |
-
self.lm_head = new_embeddings
|
764 |
-
|
765 |
-
def set_decoder(self, decoder):
|
766 |
-
self.model = decoder
|
767 |
-
|
768 |
-
def get_decoder(self):
|
769 |
-
return self.model
|
770 |
-
|
771 |
-
def forward(
|
772 |
-
self,
|
773 |
-
input_ids: torch.LongTensor = None,
|
774 |
-
attention_mask: Optional[torch.Tensor] = None,
|
775 |
-
position_ids: Optional[torch.LongTensor] = None,
|
776 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
777 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
778 |
-
labels: Optional[torch.LongTensor] = None,
|
779 |
-
use_cache: Optional[bool] = None,
|
780 |
-
output_attentions: Optional[bool] = None,
|
781 |
-
output_hidden_states: Optional[bool] = None,
|
782 |
-
return_dict: Optional[bool] = None,
|
783 |
-
cache_position: Optional[torch.LongTensor] = None,
|
784 |
-
num_logits_to_keep: int = 0,
|
785 |
-
**loss_kwargs,
|
786 |
-
) -> Union[Tuple, MaskedLMOutput]:
|
787 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
788 |
-
output_hidden_states = (
|
789 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
790 |
-
)
|
791 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
792 |
-
|
793 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
794 |
-
outputs = self.model(
|
795 |
-
input_ids=input_ids,
|
796 |
-
attention_mask=attention_mask,
|
797 |
-
position_ids=position_ids,
|
798 |
-
past_key_values=past_key_values,
|
799 |
-
inputs_embeds=inputs_embeds,
|
800 |
-
use_cache=use_cache,
|
801 |
-
output_attentions=output_attentions,
|
802 |
-
output_hidden_states=output_hidden_states,
|
803 |
-
return_dict=return_dict,
|
804 |
-
cache_position=cache_position,
|
805 |
-
)
|
806 |
-
|
807 |
-
hidden_states = outputs[0]
|
808 |
-
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
809 |
-
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
810 |
-
|
811 |
-
loss = None
|
812 |
-
if labels is not None:
|
813 |
-
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
814 |
-
|
815 |
-
if not return_dict:
|
816 |
-
output = (logits,) + outputs[1:]
|
817 |
-
return (loss,) + output if loss is not None else output
|
818 |
-
|
819 |
-
return MaskedLMOutput(
|
820 |
-
loss=loss,
|
821 |
-
logits=logits,
|
822 |
-
hidden_states=outputs.hidden_states,
|
823 |
-
attentions=outputs.attentions,
|
824 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|