File size: 1,911 Bytes
de11a90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
  - tinyllama
  - lora
  - peft
  - python
  - code
  - fine-tuning
model_type: causal-lm
library_name: transformers
pipeline_tag: text-generation
---

# 🐍 TinyLLaMA LoRA - Fine-tuned on Python Code

This is a **LoRA fine-tuned version** of [`TinyLlama/TinyLlama-1.1B-Chat-v1.0`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) using a subset of Python code from the `codeparrot` dataset. It is trained to generate Python functions and code snippets based on natural language or code-based prompts.

## πŸ”§ Training Details

- **Base model**: `TinyLlama/TinyLlama-1.1B-Chat-v1.0`
- **Adapter type**: LoRA (PEFT)
- **Dataset**: `codeparrot/codeparrot-clean-valid[:1000]`
- **Tokenized max length**: 512
- **Trained on**: Apple M3 Pro (MPS backend)
- **Epochs**: 1
- **Batch size**: 1 (with gradient accumulation)

## πŸ’‘ Example Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
adapter_model = "your-username/tinyllama-python-lora"

tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)
model = PeftModel.from_pretrained(model, adapter_model)

prompt = "<|python|>\ndef fibonacci(n):"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## 🧠 Intended Use
Code completion for Python

Teaching LLMs Python function structure

Experimentation with LoRA on small code datasets

##⚠️ Limitations
Trained on a small subset of data (1,000 samples)

May hallucinate or generate syntactically incorrect code

Not suitable for production use without further fine-tuning and evaluation

## πŸ“œ License
Apache 2.0 β€” same as the base model.