|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import Phi3Config, Phi3ForCausalLM |
|
from typing import Optional, Dict, List |
|
|
|
|
|
|
|
|
|
class VectorMemoryHead(nn.Module): |
|
def __init__(self, hidden_dim: int, num_memory_slots: int, num_heads: int, ff_dim: int, |
|
num_long_term_memory_slots: int = 0, |
|
device=None, dtype=None): |
|
super().__init__() |
|
self.hidden_dim = hidden_dim |
|
self.num_memory_slots = num_memory_slots |
|
self.num_long_term_memory_slots = num_long_term_memory_slots |
|
|
|
|
|
encoder_layer = nn.TransformerEncoderLayer( |
|
d_model=hidden_dim, nhead=num_heads, dim_feedforward=ff_dim, dropout=0.1, batch_first=True, |
|
device=device, dtype=dtype |
|
) |
|
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=1) |
|
self.memory_queries = nn.Parameter(torch.randn(1, num_memory_slots, hidden_dim, device=device, dtype=dtype)) |
|
self.memory_attention = nn.MultiheadAttention( |
|
embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True, |
|
device=device, dtype=dtype |
|
) |
|
self.memory_layernorm = nn.LayerNorm(hidden_dim, device=device, dtype=dtype) |
|
self.decoder_attention = nn.MultiheadAttention( |
|
embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True, |
|
device=device, dtype=dtype |
|
) |
|
self.decoder_layernorm = nn.LayerNorm(hidden_dim, device=device, dtype=dtype) |
|
self.decoder_ffn = nn.Sequential( |
|
nn.Linear(hidden_dim, ff_dim, device=device, dtype=dtype), |
|
nn.ReLU(), |
|
nn.Linear(ff_dim, hidden_dim, device=device, dtype=dtype) |
|
) |
|
|
|
|
|
self.use_long_term_memory = self.num_long_term_memory_slots > 0 |
|
if self.use_long_term_memory: |
|
self.long_term_memory = nn.Parameter( |
|
torch.zeros(1, self.num_long_term_memory_slots, hidden_dim, device=device, dtype=dtype) |
|
) |
|
|
|
self.memory_update_gate = nn.Sequential( |
|
nn.Linear(2 * hidden_dim, hidden_dim, device=device, dtype=dtype), |
|
nn.Sigmoid() |
|
) |
|
|
|
self.ltm_retrieval_attention = nn.MultiheadAttention( |
|
embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True, |
|
device=device, dtype=dtype |
|
) |
|
|
|
def forward(self, memory_input_sequence: torch.Tensor): |
|
batch_size = memory_input_sequence.shape[0] |
|
|
|
|
|
encoded_vectors = self.encoder(memory_input_sequence) |
|
|
|
|
|
queries = self.memory_queries.expand(batch_size, -1, -1) |
|
compressed_memory, _ = self.memory_attention(query=queries, key=encoded_vectors, value=encoded_vectors) |
|
compressed_memory = self.memory_layernorm(compressed_memory + queries) |
|
|
|
final_memory_context = compressed_memory |
|
|
|
|
|
if self.use_long_term_memory and self.long_term_memory.shape[0] == batch_size: |
|
|
|
retrieved_ltm, _ = self.ltm_retrieval_attention( |
|
query=compressed_memory, |
|
key=self.long_term_memory, |
|
value=self.long_term_memory |
|
) |
|
|
|
|
|
|
|
l1_summary = compressed_memory.mean(dim=1) |
|
ltm_summary = self.long_term_memory.mean(dim=1) |
|
gate_input = torch.cat([l1_summary, ltm_summary], dim=-1) |
|
update_gate = self.memory_update_gate(gate_input).unsqueeze(1) |
|
|
|
|
|
self.long_term_memory.data = (update_gate * l1_summary.unsqueeze(1)) + ((1 - update_gate) * self.long_term_memory.data) |
|
|
|
|
|
final_memory_context = final_memory_context + retrieved_ltm |
|
|
|
|
|
reconstructed, _ = self.decoder_attention(query=encoded_vectors, key=final_memory_context, value=final_memory_context) |
|
reconstructed_vectors = self.decoder_layernorm(reconstructed + encoded_vectors) |
|
reconstructed_vectors = self.decoder_ffn(reconstructed_vectors) |
|
|
|
return compressed_memory, reconstructed_vectors |
|
|
|
|
|
class GCVectorMemoryLayer(nn.Module): |
|
def __init__(self, original_layer: nn.Linear, global_input_dim: int, |
|
memory_dim: int, num_memory_slots: int, memory_num_heads: int, |
|
global_state_storage: Dict, dataset_keys: List[str]): |
|
super().__init__() |
|
self.input_dim = original_layer.in_features |
|
self.output_dim = original_layer.out_features |
|
self.memory_dim = memory_dim |
|
self.global_state_storage = global_state_storage |
|
self.dataset_keys = dataset_keys |
|
self.linear = original_layer |
|
|
|
device, dtype = self.linear.weight.device, self.linear.weight.dtype |
|
|
|
|
|
self.local_state_projs = nn.ModuleDict() |
|
self.global_state_projs = nn.ModuleDict() |
|
self.memory_heads = nn.ModuleDict() |
|
self.correction_heads = nn.ModuleDict() |
|
|
|
for key in self.dataset_keys: |
|
self.local_state_projs[key] = nn.Linear(self.input_dim, memory_dim, device=device, dtype=dtype) |
|
self.global_state_projs[key] = nn.Linear(global_input_dim, memory_dim, device=device, dtype=dtype) |
|
self.memory_heads[key] = VectorMemoryHead( |
|
hidden_dim=memory_dim, num_memory_slots=num_memory_slots, |
|
num_heads=memory_num_heads, ff_dim=memory_dim * 2, |
|
num_long_term_memory_slots=32, |
|
device=device, dtype=dtype |
|
) |
|
self.correction_heads[key] = nn.Linear(memory_dim, 2 * self.output_dim, device=device, dtype=dtype) |
|
|
|
self.refinement_passes: int = 2 |
|
|
|
self.last_corrected_activation: Optional[torch.Tensor] = None |
|
self.last_additive_correction: Optional[torch.Tensor] = None |
|
self.last_memory_input: Optional[torch.Tensor] = None |
|
self.last_reconstructed_from_memory: Optional[torch.Tensor] = None |
|
|
|
def forward(self, x: torch.Tensor): |
|
base_output = self.linear(x) |
|
|
|
|
|
dataset_key = self.global_state_storage.get('dataset_key') |
|
if not dataset_key or 'embeds' not in self.global_state_storage or self.refinement_passes < 1: |
|
return base_output |
|
|
|
|
|
local_state_proj = self.local_state_projs[dataset_key] |
|
global_state_proj = self.global_state_projs[dataset_key] |
|
memory_head = self.memory_heads[dataset_key] |
|
correction_head = self.correction_heads[dataset_key] |
|
|
|
global_embeds = self.global_state_storage['embeds'] |
|
if global_embeds.shape[1] != x.shape[1]: global_embeds = global_embeds[:, -x.shape[1]:, :] |
|
B, S, _ = x.shape |
|
|
|
|
|
if memory_head.use_long_term_memory and memory_head.long_term_memory.shape[0] != B: |
|
memory_head.long_term_memory.data = memory_head.long_term_memory.data.expand(B, -1, -1) |
|
|
|
with torch.no_grad(): |
|
proj_local = local_state_proj(x.detach()) |
|
proj_global = global_state_proj(global_embeds.detach()) |
|
memory_input = torch.stack([proj_global, proj_local], dim=2) |
|
memory_input_flat = memory_input.view(B * S, 2, self.memory_dim) |
|
compressed_mem_flat, _ = memory_head(memory_input_flat) |
|
aggregated_thought = compressed_mem_flat.mean(dim=1).view(B, S, self.memory_dim) |
|
|
|
|
|
corrected_activation = base_output |
|
current_thought = aggregated_thought |
|
for _ in range(self.refinement_passes): |
|
raw_correction = correction_head(current_thought) |
|
gate, value = torch.chunk(raw_correction, 2, dim=-1) |
|
corrected_activation = corrected_activation * torch.sigmoid(gate) + value |
|
|
|
current_thought_flat = current_thought.view(B * S, self.memory_dim) |
|
refined_thought, _ = memory_head.decoder_attention( |
|
query=current_thought_flat.unsqueeze(1), key=compressed_mem_flat, value=compressed_mem_flat |
|
) |
|
refined_thought = memory_head.decoder_layernorm(refined_thought.squeeze(1) + current_thought_flat) |
|
current_thought = refined_thought.view(B, S, self.memory_dim) |
|
|
|
if self.training: |
|
with torch.enable_grad(): |
|
proj_local_grad = local_state_proj(x) |
|
proj_global_grad = global_state_proj(global_embeds) |
|
memory_input_grad = torch.stack([proj_global_grad, proj_local_grad], dim=2) |
|
memory_input_flat_grad = memory_input_grad.view(B * S, 2, self.memory_dim) |
|
compressed_mem_flat_grad, recon_flat_grad = memory_head(memory_input_flat_grad) |
|
aggregated_thought_grad = compressed_mem_flat_grad.mean(dim=1).view(B, S, self.memory_dim) |
|
|
|
raw_correction_grad = correction_head(aggregated_thought_grad) |
|
gate_grad, value_grad = torch.chunk(raw_correction_grad, 2, dim=-1) |
|
final_activation = base_output * torch.sigmoid(gate_grad.to(x.dtype)) + value_grad.to(x.dtype) |
|
|
|
self.last_corrected_activation = final_activation |
|
self.last_additive_correction = value_grad |
|
self.last_memory_input = memory_input_flat_grad |
|
self.last_reconstructed_from_memory = recon_flat_grad |
|
return final_activation |
|
else: |
|
return corrected_activation.to(x.dtype) |
|
|
|
|
|
class Phi3WithVectorMemoryForCausalLM(Phi3ForCausalLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.global_state_storage = {} |
|
|
|
self.target_layer_path = "model.layers.15.mlp.gate_up_proj" |
|
|
|
self.model.embed_tokens.register_forward_hook( |
|
lambda module, input, output: self.global_state_storage.update({'embeds': output.detach()}) |
|
) |
|
|
|
|
|
|
|
if hasattr(config, "dataset_keys") and config.dataset_keys: |
|
try: |
|
print(f"Re-initializing GCVectorMemoryLayer with dataset keys: {config.dataset_keys}") |
|
original_layer = self.get_submodule(self.target_layer_path) |
|
custom_layer = GCVectorMemoryLayer( |
|
original_layer=original_layer, global_input_dim=config.hidden_size, |
|
memory_dim=64, |
|
num_memory_slots=8, |
|
memory_num_heads=4, |
|
global_state_storage=self.global_state_storage, |
|
dataset_keys=config.dataset_keys |
|
) |
|
parent_path = ".".join(self.target_layer_path.split('.')[:-1]) |
|
child_name = self.target_layer_path.split('.')[-1] |
|
setattr(self.get_submodule(parent_path), child_name, custom_layer) |
|
print(f"Successfully reloaded and replaced '{self.target_layer_path}' with specialized GCVectorMemoryLayer.") |
|
except AttributeError: |
|
print(f"Could not find target layer '{self.target_layer_path}' during reload. Model remains unmodified.") |
|
else: |
|
print("No 'dataset_keys' found in config. The custom layer will not be initialized.") |
|
|