monentiadev commited on
Commit
9ee15ae
·
verified ·
1 Parent(s): 2706f1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -205
README.md CHANGED
@@ -1,206 +1,190 @@
1
- ---
2
- tags:
3
- - setfit
4
- - sentence-transformers
5
- - text-classification
6
- - generated_from_setfit_trainer
7
- widget:
8
- - text: poopchute
9
- - text: Made
10
- - text: prox
11
- - text: What happens, uncle, everything in order?
12
- - text: I need Maritima Avenue to reduce congestion
13
- metrics:
14
- - accuracy
15
- pipeline_tag: text-classification
16
- library_name: setfit
17
- inference: true
18
- base_model: sentence-transformers/all-MiniLM-L6-v2
19
- ---
20
-
21
- # SetFit with sentence-transformers/all-MiniLM-L6-v2
22
-
23
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
-
25
- The model has been trained using an efficient few-shot learning technique that involves:
26
-
27
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
-
30
- ## Model Details
31
-
32
- ### Model Description
33
- - **Model Type:** SetFit
34
- - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
35
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
- - **Maximum Sequence Length:** 256 tokens
37
- - **Number of Classes:** 4 classes
38
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
- <!-- - **Language:** Unknown -->
40
- <!-- - **License:** Unknown -->
41
-
42
- ### Model Sources
43
-
44
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
-
48
- ### Model Labels
49
- | Label | Examples |
50
- |:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
- | request | <ul><li>'necessary lingerie'</li><li>'necessary material for today'</li><li>'I finished the room 234'</li></ul> |
52
- | conversation | <ul><li>"What's up, uncle, all good?"</li><li>'Good, how is the thing going?!'</li><li>'Hello how are you'</li></ul> |
53
- | help | <ul><li>'Please help'</li><li>"Help I don't know what I can do"</li><li>'Hello, what can I do'</li></ul> |
54
- | censorship | <ul><li>'You are a useless complete, you are useless'</li><li>'Always saying stupidities, better shut up'</li><li>'Your single existence is a shame'</li></ul> |
55
-
56
- ## Uses
57
-
58
- ### Direct Use for Inference
59
-
60
- First install the SetFit library:
61
-
62
- ```bash
63
- pip install setfit
64
- ```
65
-
66
- Then you can load this model and run inference.
67
-
68
- ```python
69
- from setfit import SetFitModel
70
-
71
- # Download from the 🤗 Hub
72
- model = SetFitModel.from_pretrained("monentiadev/en-input-classifier")
73
- # Run inference
74
- preds = model("Made")
75
- ```
76
-
77
- <!--
78
- ### Downstream Use
79
-
80
- *List how someone could finetune this model on their own dataset.*
81
- -->
82
-
83
- <!--
84
- ### Out-of-Scope Use
85
-
86
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
- -->
88
-
89
- <!--
90
- ## Bias, Risks and Limitations
91
-
92
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
- -->
94
-
95
- <!--
96
- ### Recommendations
97
-
98
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
- -->
100
-
101
- ## Training Details
102
-
103
- ### Training Set Metrics
104
- | Training set | Min | Median | Max |
105
- |:-------------|:----|:-------|:----|
106
- | Word count | 1 | 5.1483 | 40 |
107
-
108
- | Label | Training Sample Count |
109
- |:-------------|:----------------------|
110
- | censorship | 576 |
111
- | conversation | 123 |
112
- | help | 204 |
113
- | request | 520 |
114
-
115
- ### Training Hyperparameters
116
- - batch_size: (128, 128)
117
- - num_epochs: (3, 3)
118
- - max_steps: -1
119
- - sampling_strategy: oversampling
120
- - num_iterations: 20
121
- - body_learning_rate: (2e-05, 1e-05)
122
- - head_learning_rate: 0.01
123
- - loss: CosineSimilarityLoss
124
- - distance_metric: cosine_distance
125
- - margin: 0.25
126
- - end_to_end: False
127
- - use_amp: False
128
- - warmup_proportion: 0.1
129
- - l2_weight: 0.01
130
- - seed: 42
131
- - eval_max_steps: -1
132
- - load_best_model_at_end: False
133
-
134
- ### Training Results
135
- | Epoch | Step | Training Loss | Validation Loss |
136
- |:------:|:----:|:-------------:|:---------------:|
137
- | 0.0022 | 1 | 0.3104 | - |
138
- | 0.1124 | 50 | 0.3267 | - |
139
- | 0.2247 | 100 | 0.2008 | - |
140
- | 0.3371 | 150 | 0.0842 | - |
141
- | 0.4494 | 200 | 0.0218 | - |
142
- | 0.5618 | 250 | 0.0103 | - |
143
- | 0.6742 | 300 | 0.0052 | - |
144
- | 0.7865 | 350 | 0.0034 | - |
145
- | 0.8989 | 400 | 0.0025 | - |
146
- | 1.0112 | 450 | 0.0019 | - |
147
- | 1.1236 | 500 | 0.0019 | - |
148
- | 1.2360 | 550 | 0.0017 | - |
149
- | 1.3483 | 600 | 0.001 | - |
150
- | 1.4607 | 650 | 0.001 | - |
151
- | 1.5730 | 700 | 0.0011 | - |
152
- | 1.6854 | 750 | 0.0009 | - |
153
- | 1.7978 | 800 | 0.001 | - |
154
- | 1.9101 | 850 | 0.0007 | - |
155
- | 2.0225 | 900 | 0.0008 | - |
156
- | 2.1348 | 950 | 0.0007 | - |
157
- | 2.2472 | 1000 | 0.0007 | - |
158
- | 2.3596 | 1050 | 0.0006 | - |
159
- | 2.4719 | 1100 | 0.0006 | - |
160
- | 2.5843 | 1150 | 0.0006 | - |
161
- | 2.6966 | 1200 | 0.0006 | - |
162
- | 2.8090 | 1250 | 0.0006 | - |
163
- | 2.9213 | 1300 | 0.0006 | - |
164
-
165
- ### Framework Versions
166
- - Python: 3.10.0
167
- - SetFit: 1.1.2
168
- - Sentence Transformers: 5.0.0
169
- - Transformers: 4.53.1
170
- - PyTorch: 2.7.1+cu126
171
- - Datasets: 2.19.2
172
- - Tokenizers: 0.21.2
173
-
174
- ## Citation
175
-
176
- ### BibTeX
177
- ```bibtex
178
- @article{https://doi.org/10.48550/arxiv.2209.11055,
179
- doi = {10.48550/ARXIV.2209.11055},
180
- url = {https://arxiv.org/abs/2209.11055},
181
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
182
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
183
- title = {Efficient Few-Shot Learning Without Prompts},
184
- publisher = {arXiv},
185
- year = {2022},
186
- copyright = {Creative Commons Attribution 4.0 International}
187
- }
188
- ```
189
-
190
- <!--
191
- ## Glossary
192
-
193
- *Clearly define terms in order to be accessible across audiences.*
194
- -->
195
-
196
- <!--
197
- ## Model Card Authors
198
-
199
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
200
- -->
201
-
202
- <!--
203
- ## Model Card Contact
204
-
205
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
206
  -->
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: poopchute
9
+ - text: Made
10
+ - text: prox
11
+ - text: What happens, uncle, everything in order?
12
+ - text: I need Maritima Avenue to reduce congestion
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: sentence-transformers/all-MiniLM-L6-v2
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 256 tokens
37
+ - **Number of Classes:** 4 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | request | <ul><li>'necessary lingerie'</li><li>'necessary material for today'</li><li>'I finished the room 234'</li></ul> |
52
+ | conversation | <ul><li>"What's up, uncle, all good?"</li><li>'Good, how is the thing going?!'</li><li>'Hello how are you'</li></ul> |
53
+ | help | <ul><li>'Please help'</li><li>"Help I don't know what I can do"</li><li>'Hello, what can I do'</li></ul> |
54
+ | censorship | <ul><li>'You are a useless complete, you are useless'</li><li>'Always saying stupidities, better shut up'</li><li>'Your single existence is a shame'</li></ul> |
55
+
56
+ ## Uses
57
+
58
+ ### Direct Use for Inference
59
+
60
+ First install the SetFit library:
61
+
62
+ ```bash
63
+ pip install setfit
64
+ ```
65
+
66
+ Then you can load this model and run inference.
67
+
68
+ ```python
69
+ from setfit import SetFitModel
70
+
71
+ # Download from the 🤗 Hub
72
+ model = SetFitModel.from_pretrained("monentiadev/en-input-classifier")
73
+ # Run inference
74
+ preds = model("Hello")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Training Set Metrics
104
+ | Training set | Min | Median | Max |
105
+ |:-------------|:----|:-------|:----|
106
+ | Word count | 1 | 5.1483 | 40 |
107
+
108
+ | Label | Training Sample Count |
109
+ |:-------------|:----------------------|
110
+ | censorship | 576 |
111
+ | conversation | 123 |
112
+ | help | 204 |
113
+ | request | 520 |
114
+
115
+ ### Training Hyperparameters
116
+ - batch_size: (128, 128)
117
+ - num_epochs: (3, 3)
118
+ - max_steps: -1
119
+ - sampling_strategy: oversampling
120
+ - num_iterations: 20
121
+ - body_learning_rate: (2e-05, 1e-05)
122
+ - head_learning_rate: 0.01
123
+ - loss: CosineSimilarityLoss
124
+ - distance_metric: cosine_distance
125
+ - margin: 0.25
126
+ - end_to_end: False
127
+ - use_amp: False
128
+ - warmup_proportion: 0.1
129
+ - l2_weight: 0.01
130
+ - seed: 42
131
+ - eval_max_steps: -1
132
+ - load_best_model_at_end: False
133
+
134
+ ### Training Results
135
+ | Epoch | Step | Training Loss | Validation Loss |
136
+ |:------:|:----:|:-------------:|:---------------:|
137
+ | 0.0022 | 1 | 0.3104 | - |
138
+ | 0.1124 | 50 | 0.3267 | - |
139
+ | 0.2247 | 100 | 0.2008 | - |
140
+ | 0.3371 | 150 | 0.0842 | - |
141
+ | 0.4494 | 200 | 0.0218 | - |
142
+ | 0.5618 | 250 | 0.0103 | - |
143
+ | 0.6742 | 300 | 0.0052 | - |
144
+ | 0.7865 | 350 | 0.0034 | - |
145
+ | 0.8989 | 400 | 0.0025 | - |
146
+ | 1.0112 | 450 | 0.0019 | - |
147
+ | 1.1236 | 500 | 0.0019 | - |
148
+ | 1.2360 | 550 | 0.0017 | - |
149
+ | 1.3483 | 600 | 0.001 | - |
150
+ | 1.4607 | 650 | 0.001 | - |
151
+ | 1.5730 | 700 | 0.0011 | - |
152
+ | 1.6854 | 750 | 0.0009 | - |
153
+ | 1.7978 | 800 | 0.001 | - |
154
+ | 1.9101 | 850 | 0.0007 | - |
155
+ | 2.0225 | 900 | 0.0008 | - |
156
+ | 2.1348 | 950 | 0.0007 | - |
157
+ | 2.2472 | 1000 | 0.0007 | - |
158
+ | 2.3596 | 1050 | 0.0006 | - |
159
+ | 2.4719 | 1100 | 0.0006 | - |
160
+ | 2.5843 | 1150 | 0.0006 | - |
161
+ | 2.6966 | 1200 | 0.0006 | - |
162
+ | 2.8090 | 1250 | 0.0006 | - |
163
+ | 2.9213 | 1300 | 0.0006 | - |
164
+
165
+ ### Framework Versions
166
+ - Python: 3.10.0
167
+ - SetFit: 1.1.2
168
+ - Sentence Transformers: 5.0.0
169
+ - Transformers: 4.53.1
170
+ - PyTorch: 2.7.1+cu126
171
+ - Datasets: 2.19.2
172
+ - Tokenizers: 0.21.2
173
+
174
+ <!--
175
+ ## Glossary
176
+
177
+ *Clearly define terms in order to be accessible across audiences.*
178
+ -->
179
+
180
+ <!--
181
+ ## Model Card Authors
182
+
183
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Contact
188
+
189
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
  -->