File size: 16,942 Bytes
7935f23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2000
- loss:CoSENTLoss
base_model: avsolatorio/GIST-small-Embedding-v0
widget:
- source_sentence: is alexa compatible with tv?
sentences:
- Of een ei iedere dag gezond of ongezond is, hangt af van wat je verder iedere
dag eet. Het Voedingscentrum adviseert om te variëren in vis, peulvruchten, vlees
en ei. Het eten van 2-3 eieren per week past in een gezonde voeding. Vegetariërs
kunnen 3-4 eieren per week eten.
- The price was right, the size was right and as it turns out this PYLE TV has the
best picture quality of all 5 TVs that our family watches! The setup was super
easy with no hassle. I would recommend it to anyone!
- According to the Association of British Insurers, insurance companies will look
into a policyholder's medical profile if they give up smoking. They'll commonly
seek a report from a policyholder's family doctor. If this raises concerns, they
may ask a policyholder to have a chest X-ray.
- source_sentence: is nyada a real college?
sentences:
- The instruments have been classified as Wind instruments (aero phonic) including
Bansuri and Nagaswaram; String instruments (chordophonic) including Dilruba and
Veena; Percussion instruments (membranophonic) including Tabla, Mridangam and
(idiophonic) Bortal, and Ghatam.
- This service is currently offered free of charge by the bank. You can get the
last 'Available' balance of your account (by an SMS) by giving a Missed Call to
18008431122. You can get the Mini Statement (by an SMS) for last 5 transactions
in your account by giving a Missed Call to 18008431133. 1.
- King Size Bed Known as a standard 5ft bed or 150cm wide by 200cm in length.
- source_sentence: is europe bigger than australia?
sentences:
- Although this is just five per cent of the world's land mass (149.45 million square
kilometres), Australia is the planet's sixth largest country after Russia, Canada,
China, the United States of America and Brazil. ... almost as great as that of
the United States of America. about 50 per cent greater than Europe, and.
- The recommended dose of evening primrose oil is 8 to 12 capsules a day, at a dose
of 500 milligrams per capsule. A range of evening primrose oil products are available
for purchase online.
- This includes a three-year law degree, a one-year LPC and finally a two-year training
contract with a law firm. Studying a non-law subject for your degree means you'll
need to take the GDL conversion course before your LPC, which adds one year to
the total.
- source_sentence: how long does money take to transfer boi?
sentences:
- 'When will it take more than one working day? It will take more than one working
day to reach your payee''s bank when: You make a payment online after 3.30pm in
the Republic of Ireland or after 4.30pm in Northern Ireland and Great Britain
on a working day. Your payment will begin to process on the next working day.'
- U.S. citizens travelling to South Korea for business or tourism do not need a
visa. ... Although obtaining a visa in advance can ease the entry process, as
long as you have a valid U.S. passport, you can enter the Republic of Korea without
a visa for a stay of up to 90 days if you are a tourist or on business.
- Structural insulated panels (SIPs) are a high performance building system for
residential and commercial construction. The panels consist of an insulating foam
core sandwiched between two structural facings, typically oriented strand board
(OSB). SIPs are manufactured under factory controlled conditions.
- source_sentence: where are bussola shoes made?
sentences:
- According to Harvard University, biking at a moderate speed of 12 to 13.9 miles
per hour will cause a 155-pound person to burn 298 calories in 30 minutes. At
a faster rate of 14 to 15.9 miles per hour, a person of the same weight will burn
372 calories.
- If you had bought just one share of Microsoft at the IPO, you would now have 288
shares after all the splits. Those shares would be worth $44,505 at the current
stock quote of $154.53. A $5,000 investment would have purchased 238 shares at
the IPO price.
- FRAM opens the first plant devoted exclusively to the development and manufacture
of heavy duty air filters and cartridges, in Nevada, Missouri.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on avsolatorio/GIST-small-Embedding-v0
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) <!-- at revision 75e62fd210b9fde790430e0b2f040b0b00a021b1 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("moshew/gist_small_ft_gooaq_v2")
# Run inference
sentences = [
'where are bussola shoes made?',
'FRAM opens the first plant devoted exclusively to the development and manufacture of heavy duty air filters and cartridges, in Nevada, Missouri.',
'According to Harvard University, biking at a moderate speed of 12 to 13.9 miles per hour will cause a 155-pound person to burn 298 calories in 30 minutes. At a faster rate of 14 to 15.9 miles per hour, a person of the same weight will burn 372 calories.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 12.05 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 59.28 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Though there are some minor differences in shape and nutrients, Rapid-Rise Yeast is (pretty much) the same as Instant Yeast and Bread Machine Yeast. ... Also, Rapid-Rise Yeast is a little more potent than Active Dry Yeast and can be mixed in with your dry ingredients directly.</code> | <code>1.0</code> |
| <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Application. To clarify, double-acting baking powder is “regular” baking powder. Single-acting baking powder exits, but when a recipe calls for baking powder it means double-acting. And even if a recipe does call for single-acting, you can substitute double-acting without worrying about it changing the recipe.</code> | <code>0.0</code> |
| <code>are light kits universal for ceiling fans?</code> | <code>Not all Universal Light Kits are actually Universal. They can be universal to only that manufacturer. ... Casablanca and Hunter Ceiling Fan Light Kits are universal only to their own fans.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:-----:|:----:|:-------------:|
| 0.008 | 1 | 1.9382 |
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |