--- library_name: transformers license: mit base_model: roberta-base-openai-detector tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-openai-detector-text2sql-approach-1 results: [] --- # roberta-base-openai-detector-text2sql-approach-1 This model is a fine-tuned version of [roberta-base-openai-detector](https://huggingface.co/roberta-base-openai-detector) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6802 - Accuracy: 0.58 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 57 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7355 | 1.0 | 57 | 0.7133 | 0.5 | | 0.7256 | 2.0 | 114 | 0.6934 | 0.56 | | 0.7062 | 3.0 | 171 | 0.6824 | 0.58 | | 0.7048 | 4.0 | 228 | 0.6990 | 0.46 | | 0.6976 | 5.0 | 285 | 0.7034 | 0.5 | | 0.7104 | 6.0 | 342 | 0.7354 | 0.5 | | 0.704 | 7.0 | 399 | 0.6808 | 0.58 | | 0.6914 | 8.0 | 456 | 0.6776 | 0.6 | | 0.6878 | 9.0 | 513 | 0.6849 | 0.54 | | 0.6916 | 10.0 | 570 | 0.6802 | 0.58 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1