Update README.md
Browse files
README.md
CHANGED
|
@@ -52,11 +52,6 @@ outputs = model(**inputs)
|
|
| 52 |
| Layers | 6 |
|
| 53 |
| Attention Heads | 6 |
|
| 54 |
|
| 55 |
-
### Intended Use
|
| 56 |
-
|
| 57 |
-
**Intended Use Cases:** ProkBERT-mini-k6-s1 is intended for bioinformatics researchers and practitioners focusing on genomic sequence analysis, including:
|
| 58 |
-
- sequence classification tasks
|
| 59 |
-
- Exploration of genomic patterns and features
|
| 60 |
|
| 61 |
## Segmentation and Tokenization in ProkBERT Models
|
| 62 |
|
|
@@ -140,7 +135,17 @@ except ImportError:
|
|
| 140 |
| iPromoter-BnCNN | 0.55 | 0.27 | **0.99** | 0.18 |
|
| 141 |
| MULTiPly | 0.54 | 0.19 | 0.92 | 0.22 |
|
| 142 |
|
| 143 |
-
*The ProkBERT family models exhibit remarkably consistent performance across the metrics assessed. With respect to accuracy, all three tools achieve an impressive
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
|
|
|
|
| 52 |
| Layers | 6 |
|
| 53 |
| Attention Heads | 6 |
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
## Segmentation and Tokenization in ProkBERT Models
|
| 57 |
|
|
|
|
| 135 |
| iPromoter-BnCNN | 0.55 | 0.27 | **0.99** | 0.18 |
|
| 136 |
| MULTiPly | 0.54 | 0.19 | 0.92 | 0.22 |
|
| 137 |
|
| 138 |
+
*The ProkBERT family models exhibit remarkably consistent performance across the metrics assessed. With respect to accuracy, all three tools achieve an impressive*
|
| 139 |
+
|
| 140 |
+
| Metric | ProkBERT-mini | ProkBERT-mini-c | ProkBERT-mini-long | Promotech | Sigma70Pred | iPromoter-BnCNN | MULTiPly |
|
| 141 |
+
|--------------|---------------|-----------------|--------------------|-----------|-------------|-----------------|----------|
|
| 142 |
+
| Accuracy | 0.81 | 0.79 | 0.81 | 0.61 | 0.62 | 0.61 | 0.58 |
|
| 143 |
+
| F1 | 0.81 | 0.78 | 0.81 | 0.43 | 0.58 | 0.65 | 0.58 |
|
| 144 |
+
| MCC | 0.63 | 0.57 | 0.62 | 0.29 | 0.24 | 0.21 | 0.16 |
|
| 145 |
+
| Sensitivity | 0.81 | 0.75 | 0.79 | 0.29 | 0.52 | 0.66 | 0.57 |
|
| 146 |
+
| Specificity | 0.82 | 0.82 | 0.83 | 0.93 | 0.71 | 0.55 | 0.59 |
|
| 147 |
+
|
| 148 |
+
*Promoter prediction performance metrics on a diverse test set. A comparative analysis of various promoter prediction tools, showcasing their performance across key metrics including accuracy, F1 score, MCC, sensitivity, and specificity.*
|
| 149 |
|
| 150 |
|
| 151 |
|