ligetinagy commited on
Commit
7b7f545
·
verified ·
1 Parent(s): 920da46

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -5,7 +5,7 @@ license: cc-by-nc-4.0
5
 
6
  ## ProkBERT-mini Model
7
 
8
- ProkBERT-mini-k6s1 is part of the ProkBERT family of genomic language models, specifically designed for microbiome applications. This model, optimized for DNA sequence analysis. This model can provide robust and high resolution solutions.
9
 
10
  ## Simple Usage Example
11
 
@@ -22,7 +22,7 @@ tokenization_parameters = {
22
  }
23
  # Initialize the tokenizer and model
24
  tokenizer = ProkBERTTokenizer(tokenization_params=tokenization_parameters, operation_space='sequence')
25
- model = MegatronBertForMaskedLM.from_pretrained("nerualbioinfo/prokbert-mini-k6s1")
26
  # Example DNA sequence
27
  sequence = 'ATGTCCGCGGGACCT'
28
  # Tokenize the sequence
@@ -152,7 +152,7 @@ except ImportError:
152
 
153
  *Promoter prediction performance metrics on a diverse test set. A comparative analysis of various promoter prediction tools, showcasing their performance across key metrics including accuracy, F1 score, MCC, sensitivity, and specificity.*
154
 
155
- ### Evaluation on phage recognitation benchmark
156
 
157
  | method | L | auc_class1 | acc | f1 | mcc | recall | sensitivity | specificity | tn | fp | fn | tp | Np | Nn | eval_time |
158
  |:--------------|-----:|-------------:|---------:|---------:|---------:|---------:|--------------:|--------------:|-----:|-----:|-----:|-----:|------:|------:|------------:|
 
5
 
6
  ## ProkBERT-mini Model
7
 
8
+ ProkBERT-mini-k6s1 is part of the ProkBERT family of genomic language models, specifically designed for microbiome applications. This model, optimized for DNA sequence analysis, can provide robust and high resolution solutions.
9
 
10
  ## Simple Usage Example
11
 
 
22
  }
23
  # Initialize the tokenizer and model
24
  tokenizer = ProkBERTTokenizer(tokenization_params=tokenization_parameters, operation_space='sequence')
25
+ model = MegatronBertForMaskedLM.from_pretrained("neuralbioinfo/prokbert-mini-k6s1")
26
  # Example DNA sequence
27
  sequence = 'ATGTCCGCGGGACCT'
28
  # Tokenize the sequence
 
152
 
153
  *Promoter prediction performance metrics on a diverse test set. A comparative analysis of various promoter prediction tools, showcasing their performance across key metrics including accuracy, F1 score, MCC, sensitivity, and specificity.*
154
 
155
+ ### Evaluation on phage recognition benchmark
156
 
157
  | method | L | auc_class1 | acc | f1 | mcc | recall | sensitivity | specificity | tn | fp | fn | tp | Np | Nn | eval_time |
158
  |:--------------|-----:|-------------:|---------:|---------:|---------:|---------:|--------------:|--------------:|-----:|-----:|-----:|-----:|------:|------:|------------:|