hunyuan-moe-tiny-random / vit_model.py
ngxson's picture
ngxson HF Staff
Upload folder using huggingface_hub
bae8e8d verified
import json
import types
import math
import torch
from torch import Tensor, nn
import torch.nn.functional as F
from typing import List, Tuple, Optional, Union
from contextlib import contextmanager
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask,
)
from transformers.models.clip.configuration_clip import CLIPVisionConfig
from transformers.modeling_outputs import BaseModelOutputWithPooling
from .modeling_hunyuan import HunYuanDecoderLayer, HunYuanRMSNorm
from .configuration_hunyuan import HunYuanConfig
def NaVitForward(input_ids, encoder_input, vit, image_tensors, images_pos, vit_input_resolution, im_start_id, im_end_id, image_token_id, anyres_vit_two_views, dtype):
# input_ids: (B, L)
# encoder_input: (L, B, E)
# image_tensors [[Tensor],...,[Tensor]]
# image_pos [[Tensor],...,[Tensor]]
# tokenizer = get_tokenizer()
b = len(input_ids)
img_embs = None
all_nums = sum([len(tensors) for tensors in image_tensors]) if image_tensors else 0
if all_nums != 0:
img_embs, img_batch_pos = vit(image_tensors)
else:
# when no input image, initialize a fake tensor
pad_nums = 1
image_tensors = [[torch.rand(3, vit_input_resolution, vit_input_resolution, dtype=dtype, device=torch.cuda.current_device()) for _ in range(pad_nums)]]
img_embs, img_batch_pos = vit(image_tensors)
encoder_input = encoder_input.clone()
if all_nums > 0:
assert len(images_pos) == len(img_batch_pos), \
(len(images_pos), len(img_batch_pos))
start_token_id = im_start_id
end_token_id = im_end_id
placeholder_id = image_token_id
for idx in range(len(images_pos)):
assert len(images_pos[idx]) == len(img_batch_pos[idx]), \
(len(images_pos[idx]), len(img_batch_pos[idx]))
for p_img_pos_in_batch, p_batch_img_pos in zip(img_batch_pos[idx], images_pos[idx]):
# the positions to be filled [s_start, s_end)
s_idx, s_start, s_end = p_img_pos_in_batch
current_embs = img_embs[s_idx, s_start:s_end]
im_s, im_e = p_batch_img_pos
assert len(current_embs) == im_e - im_s, \
(img_embs.shape, (s_start, s_end, s_idx), current_embs.shape, (im_s, im_e, idx))
if not anyres_vit_two_views:
assert input_ids[idx, im_s - 1] == start_token_id, \
input_ids[idx, im_s - 1]
assert input_ids[idx, im_e] == end_token_id, \
input_ids[idx, im_e]
assert (input_ids[idx, im_s:im_e] == placeholder_id).all(), \
f'The tokens to be filled are not the placeholder_id {placeholder_id}: {(input_ids[idx, im_s:im_e] == placeholder_id).sum()} vs {im_e - im_s}'
encoder_input[idx, im_s:im_e] = current_embs
else:
# when no input image, to mask vit value
vit_mask = torch.zeros([1, img_embs.shape[0]], device=torch.cuda.current_device())
current_embs = img_embs[0, :]
encoder_input[0, 1:img_embs.shape[0] + 1] = encoder_input[0, 1:img_embs.shape[0] + 1] * (1 - vit_mask) + current_embs * vit_mask
return encoder_input, input_ids
def VitForward(input_ids, encoder_input, vit, vit_linear_encoder, image_tensors, images_pos, vit_input_resolution, vit_mapping_type, vit_patch, vit_token):
vit_patch_mlp = (vit_patch > 1 and vit_mapping_type == 'mlp') or vit_patch == 0
b = len(input_ids)
if images_pos is None:
images_pos = torch.ones([len(input_ids), 1, 3])
images_pos[:, :, 1] = images_pos[:, :, 1]*(vit_token + 1)
images_pos = images_pos.long()
real_image_nums = []
image_tensors = image_tensors.view(b, -1, 3, vit_input_resolution, vit_input_resolution)
real_images = []
all_nums = 0
img_index = []
for s in range(len(images_pos)):
real_image_num = 0
for (im_s, im_e,index) in images_pos[s]:
if im_s == -1:
break
real_image_num += 1
all_nums += 1
img_index.append(index)
real_image_nums.append(real_image_num)
real_images.append(image_tensors[s][:real_image_num])
if vit_patch == 1:
img_index = None
if all_nums == 0:
# when no input image, initialize a fake tensor
img_input = torch.rand(b, 3, vit_input_resolution, vit_input_resolution).cuda().type(image_tensors.dtype)
img_embs = vit(img_input)
img_embs = vit_linear_encoder(img_embs)
else:
img_input = torch.cat(real_images)
img_embs = vit(img_input, img_index = img_index)
img_embs = vit_linear_encoder(img_embs)
encoder_input = encoder_input.clone()
start = 0
if all_nums > 0:
for s, real_image_len in enumerate(real_image_nums):
current_embs = img_embs[start:start + real_image_len, :] #[30, 256, 4096]
for ss in range(current_embs.shape[0]):
im_s, im_e, index = images_pos[s, ss]
# 子图特征更少
if index > 0 and vit_patch_mlp:
encoder_input[s, im_s:im_e,] = current_embs[ss, :(im_e-im_s)]
else:
encoder_input[s, im_s:im_e] = current_embs[ss, :]
start = start + real_image_len
else:
# when no input image, to mask vit value
for s in range(b):
vit_mask = torch.zeros([vit_token, 1]).cuda()
current_embs = img_embs[:, start:start + 1]
encoder_input[1:vit_token + 1, s] = encoder_input[1:vit_token + 1, s] * (1 - vit_mask) + current_embs[:, 0, :] * vit_mask
start = start + 1
return encoder_input, input_ids
def group_images_by_max_seq_len(
images: List[List[Tensor]], patch_size: int,
max_seq_len: int, adaptor_patch_size: int,
add_cls_token: bool = False) -> List[List[Tensor]]:
groups = []
group = []
pos_groups = []
seq_len = 0
num_images = 0
for image_list in images:
pos_group = []
for image in image_list:
num_images += 1
assert isinstance(image, Tensor)
image_dims = image.shape[-2:]
ph, pw = map(lambda t: t // patch_size, image_dims)
image_seq_len = (ph * pw)
new_image_seq_len = image_seq_len
grouped_len = seq_len + image_seq_len
if add_cls_token:
new_image_seq_len += 1
grouped_len += num_images
assert new_image_seq_len <= max_seq_len, f'image with dimensions {image_dims} exceeds maximum sequence length'
if grouped_len > max_seq_len:
groups.append(group)
group = []
seq_len = 0
num_images = 1
group.append(image)
start = seq_len // (adaptor_patch_size * adaptor_patch_size)
end = start + image_seq_len//(adaptor_patch_size * adaptor_patch_size)
batch_idx = len(groups)
pos_group.append([batch_idx, start, end])
seq_len += image_seq_len
pos_groups.append(pos_group)
if len(group) > 0:
groups.append(group)
return groups, pos_groups
class AnyResCLIPVisionEmbeddings(nn.Module):
def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.config = config
# self.sparse_attn_mask = args.sparse_attn_mask
# self.use_flash_attn = args.use_flash_attn
self.embed_dim = config.hidden_size
self.image_size = config.max_image_size
self.patch_size = config.patch_size
self.max_seq_len = config.max_vit_seq_len
self.adaptor_patch_size = config.adaptor_patch_size
self.anyres_vit_two_views = config.anyres_vit_two_views
self.vit_add_patchemb_bias = config.vit_add_patchemb_bias
self.vit_remove_prenorm = config.vit_remove_prenorm
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=self.vit_add_patchemb_bias,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.skip_cls_token = True
# add interpolate_pos_encoding
if self.anyres_vit_two_views:
self.num_positions = self.num_patches
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim) * 0.02)
else:
self.num_positions = self.num_patches + 1
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
# self.position_ids = torch.arange(self.num_positions).expand((1, -1))
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
if not self.vit_remove_prenorm:
self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1]
position_embeddings = self.position_embedding(self.position_ids)
patch_pos_embed = position_embeddings[:, 1:]
num_positions = position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return patch_pos_embed
# class_pos_embed = position_embeddings[:, 0]
dim = embeddings.shape[-1]
h0 = height // self.patch_size
w0 = width // self.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
raw_type = patch_pos_embed.dtype
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.to(torch.float32, non_blocking=True),
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
mode="bilinear",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.to(raw_type, non_blocking=True)
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def rescale_positional_embedding(self, out_size):
h, w = out_size
pos_embed_shape = int((self.position_embedding.shape[1]) ** 0.5)
if (h, w) == (pos_embed_shape, pos_embed_shape):
return self.position_embedding
rescaled_positional_embedding = \
self.position_embedding.new_zeros(1, h*w, self.position_embedding.shape[2])
pe_2d = self.position_embedding[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape)
pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w)
rescaled_positional_embedding[0] = pe_2d.T.contiguous()
return rescaled_positional_embedding
def forward_single(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
if pixel_values.ndim == 3:
pixel_values = pixel_values[None]
batch_size, num_channels, height, width = pixel_values.shape
if self.anyres_vit_two_views:
# padding
pad_h = (self.patch_size - height % self.patch_size) % self.patch_size
pad_w = (self.patch_size - width % self.patch_size) % self.patch_size
pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
b, c, h, w = patch_embeds.shape
# (b, hw, c)
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
if self.anyres_vit_two_views:
embeddings = patch_embeds + self.rescale_positional_embedding(out_size=(h, w))
else:
embeddings = patch_embeds + self.interpolate_pos_encoding(patch_embeds, height, width)
if not self.vit_remove_prenorm:
embeddings = self.pre_layernorm(embeddings)
return embeddings, (h, w)
def forward(self, images: List[List[Tensor]]):
'''
Input:
images: List[List[Tensor]]
Return:
embeddings: Tensor (B, L, E)
attn_mask: Tensor (B, L, 2)
pos_groups: List[List[(batch_idx, start, end)]]
'''
batched_images, pos_groups = group_images_by_max_seq_len(
images, self.patch_size, self.max_seq_len, self.adaptor_patch_size, add_cls_token=not self.skip_cls_token)
max_seq_len = self.max_seq_len
# batched_images is a list of a list
B = len(batched_images)
L = max_seq_len
E = self.embed_dim
embeddings = torch.zeros(B, L, E, dtype=self.config.torch_dtype, requires_grad=True).cuda(non_blocking=True)
attn_mask = embeddings.new_full((B, 1, L, L), False, dtype=torch.bool) # True presents compute
assert len(images) == len(pos_groups), (len(images), len(pos_groups))
batch_images = []
batch_pos = []
for images_i, pos_group in zip(images, pos_groups):
assert len(images_i) == len(pos_group), (len(images_i), len(pos_group))
for image, pos in zip(images_i, pos_group):
batch_idx, start, end = pos
a2 = self.adaptor_patch_size ** 2
# recover the real number of the input image tokens
start *= a2
end *= a2
emb, _ = self.forward_single(image)
assert emb.ndim == 3, '(B, L, E)'
embeddings[batch_idx, start:end] = emb
attn_mask[batch_idx, :, start:end, start:end] = True
return embeddings, attn_mask, pos_groups
class CLIPVisionEmbeddings(nn.Module):
def __init__(self, config: CLIPVisionConfig, add_pre_layernorm=False, skip_cls_token=True, vit_patch=1):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.image_size = config.vit_input_resolution
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.skip_cls_token = skip_cls_token
self.num_positions = self.num_patches + 1
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
if vit_patch > 1:
self.position_embedding = nn.Embedding(self.num_patches * (vit_patch ** 2 + 1) + 1, self.embed_dim)
# 0 支持最大16张图,目前写死了,如需其他的需要额外定义参数
elif vit_patch == 0:
self.position_embedding = nn.Embedding(self.num_patches * (16 ** 2 + 1) + 1, self.embed_dim)
else:
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
if add_pre_layernorm:
self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
else:
self.pre_layernorm = None
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
position_embeddings = self.position_embedding(self.position_ids)
num_positions = position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return position_embeddings
class_pos_embed = position_embeddings[:, 0]
patch_pos_embed = position_embeddings[:, 1:]
dim = embeddings.shape[-1]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
raw_type = patch_pos_embed.dtype
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.float(),
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
mode="bicubic",
align_corners=False,
)
# print(patch_pos_embed.shape)
patch_pos_embed = patch_pos_embed.to(raw_type)
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False, img_index=None) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
if self.skip_cls_token:
embeddings = patch_embeds
if img_index is None:
position_ids = self.position_ids[:,1:]
embeddings = embeddings + self.position_embedding(position_ids)
else:
position_ids = (torch.tensor(img_index).cuda() * (self.num_positions - 1)).unsqueeze(1).repeat(1, self.num_positions - 1) \
+ self.position_ids.expand(batch_size, -1)[:, 1:]
embeddings = embeddings + self.position_embedding(position_ids)
else:
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
if img_index is None:
embeddings = embeddings + self.position_embedding(self.position_ids)
else:
position_ids = self.position_ids.expand(batch_size,-1)[:,0].unsqueeze(1)
new_position = (torch.tensor(img_index).cuda() * (self.num_positions -1)).unsqueeze(1).repeat(1,self.num_positions-1) + self.position_ids.expand(batch_size,-1)[:,1:]
position_ids = torch.cat([position_ids,new_position],dim=1)
embeddings = embeddings + self.position_embedding(position_ids)
if self.pre_layernorm is not None:
embeddings = self.pre_layernorm(embeddings)
return embeddings
class NaVitTransformer(nn.Module):
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
super().__init__()
self.config = config
self.vit_config = vit_config
with self.prepare_args(config, vit_config):
self._use_sdpa = config._attn_implementation == "sdpa"
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layers = nn.ModuleList(
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
@contextmanager
def prepare_args(self, config, vit_config):
hidden_act = config.hidden_act
hidden_size = config.hidden_size
ffn_hidden_size = config.intermediate_size
num_attention_heads = config.num_attention_heads
num_key_value_heads = config.num_key_value_heads
attention_head_dim = config.attention_head_dim
use_qk_norm = config.use_qk_norm
use_rotary_pos_emb = config.use_rotary_pos_emb
num_hidden_layers = config.num_hidden_layers
rms_norm_eps = config.rms_norm_eps
attention_dropout = config.attention_dropout
# hidden_dropout = config.hidden_dropout
norm_type = config.norm_type
attention_bias = config.attention_bias
mlp_bias = config.mlp_bias
use_mla = config.use_mla
num_experts = config.num_experts
_attn_implementation = config._attn_implementation
config.hidden_act = vit_config.hidden_act
config.hidden_size = vit_config.hidden_size
config.intermediate_size = vit_config.intermediate_size
config.num_attention_heads = vit_config.num_attention_heads
config.num_key_value_heads = None
config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
config.use_qk_norm = False
config.use_rotary_pos_emb = False
config.num_hidden_layers = vit_config.num_hidden_layers
config.rms_norm_eps = vit_config.layer_norm_eps
config.attention_dropout = vit_config.attention_dropout
# config.hidden_dropout = vit_config.hidden_dropout
config.norm_type = config.vit_norm_type
config.attention_bias = True
config.mlp_bias = True
config.use_mla = False
config.num_experts = 1
config._attn_implementation = "eager"
yield
config.hidden_act = hidden_act
config.hidden_size = hidden_size
config.intermediate_size = ffn_hidden_size
config.num_attention_heads = num_attention_heads
config.num_key_value_heads = num_key_value_heads
config.attention_head_dim = attention_head_dim
config.use_qk_norm = use_qk_norm
config.use_rotary_pos_emb = use_rotary_pos_emb
config.num_hidden_layers = num_hidden_layers
config.rms_norm_eps = rms_norm_eps
config.attention_dropout = attention_dropout
# config.hidden_dropout = hidden_dropout
config.attention_bias = attention_bias
config.mlp_bias = mlp_bias
config.norm_type = norm_type
config.use_mla = use_mla
config.num_experts = num_experts
config._attn_implementation = _attn_implementation
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
hidden_states, attention_mask, img_pos = self.embeddings(pixel_values)
attention_mask = attention_mask.int()
batch_size, seq_length, _ = hidden_states.shape
past_key_values_length = 0
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
)
for layer_idx, decoder_layer in enumerate(self.layers):
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask
)
hidden_states = layer_outputs[0]
return hidden_states, img_pos
class AnyResVitTransformer(NaVitTransformer):
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig, anyres_vit_max_image_size):
super().__init__(config, vit_config)
old_anyres_vit_max_image_size = vit_config.max_image_size
anyres_vit_max_image_size = anyres_vit_max_image_size or old_anyres_vit_max_image_size
vit_config.max_image_size = anyres_vit_max_image_size
vit_config.torch_dtype = config.torch_dtype
vit_config.anyres_vit_two_views = config.anyres_vit_two_views
vit_config.vit_remove_prenorm = config.vit_remove_prenorm
vit_config.vit_add_patchemb_bias = config.vit_add_patchemb_bias
self.embeddings = AnyResCLIPVisionEmbeddings(vit_config)
vit_config.max_image_size = old_anyres_vit_max_image_size
def fix_embeddings_fn(self, pixel_values):
# (B, L, E)
embeddings, hw = self.embeddings.forward_single(pixel_values)
embeddings = self.embeddings.pre_layernorm(embeddings)
return embeddings
class CLIPVisionTransformer(nn.Module):
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
super().__init__()
embed_dim = vit_config.hidden_size
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=vit_config.layer_norm_eps)
self.embeddings = CLIPVisionEmbeddings(vit_config, skip_cls_token=config.skip_cls_token, vit_patch=config.vit_patch)
with self.prepare_args(config, vit_config):
self.layers = nn.ModuleList(
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
@contextmanager
def prepare_args(self, config, vit_config):
hidden_act = config.hidden_act
hidden_size = config.hidden_size
ffn_hidden_size = config.intermediate_size
num_attention_heads = config.num_attention_heads
num_key_value_heads = config.num_key_value_heads
attention_head_dim = config.attention_head_dim
use_qk_norm = config.use_qk_norm
use_rotary_pos_emb = config.use_rotary_pos_emb
num_hidden_layers = config.num_hidden_layers
rms_norm_eps = config.rms_norm_eps
attention_dropout = config.attention_dropout
# hidden_dropout = config.hidden_dropout
norm_type = config.norm_type
attention_bias = config.attention_bias
mlp_bias = config.mlp_bias
use_mla = config.use_mla
num_experts = config.num_experts
_attn_implementation = config._attn_implementation
config.hidden_act = vit_config.hidden_act
config.hidden_size = vit_config.hidden_size
config.intermediate_size = vit_config.intermediate_size
config.num_attention_heads = vit_config.num_attention_heads
config.num_key_value_heads = None
config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
config.use_qk_norm = False
config.use_rotary_pos_emb = False
config.num_hidden_layers = vit_config.num_hidden_layers
config.rms_norm_eps = vit_config.layer_norm_eps
config.attention_dropout = vit_config.attention_dropout
# config.hidden_dropout = 0.0
config.norm_type = "fused"
config.attention_bias = True
config.mlp_bias = True
config.use_mla = False
config.num_experts = 1
config._attn_implementation = "eager"
yield
config.hidden_act = hidden_act
config.hidden_size = hidden_size
config.intermediate_size = ffn_hidden_size
config.num_attention_heads = num_attention_heads
config.num_key_value_heads = num_key_value_heads
config.attention_head_dim = attention_head_dim
config.use_qk_norm = use_qk_norm
config.use_rotary_pos_emb = use_rotary_pos_emb
config.num_hidden_layers = num_hidden_layers
config.rms_norm_eps = rms_norm_eps
config.attention_dropout = attention_dropout
# config.hidden_dropout = hidden_dropout
config.norm_type = norm_type
config.attention_bias = attention_bias
config.mlp_bias = mlp_bias
config.use_mla = use_mla
config.num_experts = num_experts
config._attn_implementation = _attn_implementation
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
img_index=None
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, img_index=img_index)
hidden_states = self.pre_layrnorm(hidden_states)
batch = hidden_states.shape[0]
seq_len = hidden_states.shape[1]
device = hidden_states.device
attention_mask = torch.ones(batch, 1, seq_len, seq_len, dtype=torch.float32, device=device)
for layer_idx, decoder_layer in enumerate(self.layers):
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask
)
hidden_states = layer_outputs[0]
return hidden_states
class Vit(torch.nn.Module):
def __init__(self, config, resampler_token=64, pool_rate=2):
super().__init__()
self.config = config
self.vit_mapping_type = config.vit_mapping_type
self.anyres_vit_max_image_size = config.anyres_vit_max_image_size
self.skip_cls_token = config.skip_cls_token
self.pool_rate = pool_rate
self.vit_type = self.config.vit_type
self.anyres_vit_two_views = self.config.anyres_vit_two_views
if self.vit_type in ['Vit-g', 'Vit-bigG', 'NaVit', 'EvaVit', 'AnyResVit']:
self.img_init(resampler_token, config.vit_input_resolution, config.vit_mapping_type, pool_rate)
else:
raise NotImplementedError(f"unsupported vit type: {self.vit_type}")
def img_init(self, resampler_token=64, vit_input_resolution=224, vit_mapping_type='resampler', pool_rate=2):
if self.vit_type == 'AnyResVit':
vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
self.vit_config = types.SimpleNamespace(**vit_config["vision_config"])
self.vit_config.image_size = vit_input_resolution
self.vit = AnyResVitTransformer(self.config, self.vit_config, self.anyres_vit_max_image_size)
elif self.vit_type == 'Vit-g':
vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
self.vit_config = types.SimpleNamespace(**{**vit_config["vision_config_dict"],**vit_config["vision_config"]})
self.vit_config.vit_input_resolution = vit_input_resolution
self.vit = CLIPVisionTransformer(self.config, self.vit_config)
else:
assert False, "other vit_types are not supported"
if self.vit_mapping_type == 'simple_conv_mlp':
self.perceive = SimpleConvMlp(self.vit_config.hidden_size, self.config.hidden_size, self.config.anyres_pooling_size, \
self.config.vit_used_rms_norm, self.config.rms_norm_eps, poolmlp=False, twoview=True)
elif self.vit_mapping_type == 'oryx_mlp':
self.perceive = OryxMLPv2(self.vit_config.hidden_size, self.config.hidden_size, twoview=True, use_pe=False)
elif self.vit_mapping_type == 'mlp':
self.mlp_depth = 2
# one mlp layer already in gpt_model.py
mlp_hidden_size = self.vit_config.hidden_size
if self.vit_type in ['NaVit', 'EvaVit']:
mlp_hidden_size *= self.vit_config.adaptor_patch_size **2
if self.mlp_depth > 1:
mlp_modules = [torch.nn.Linear(mlp_hidden_size, self.config.hidden_size), torch.nn.GELU()]
if self.vit_type in ['NaVit', 'EvaVit']:
for _ in range(1, self.mlp_depth):
mlp_modules.append(torch.nn.Linear(self.config.hidden_size, self.config.hidden_size))
mlp_modules.append(torch.nn.GELU())
self.perceive = torch.nn.Sequential(*mlp_modules)
else:
assert False, "other vit_mapping_types are not supported"
self.vit_patch_mlp = (self.config.vit_patch > 1 and self.vit_mapping_type == 'mlp') or self.config.vit_patch == 0
for name, param in self.named_parameters():
setattr(param, "is_vit_param", True)
def forward(self, images, img_index=None):
if self.vit_type in ['AnyResVit']:
dtype = self.config.torch_dtype
device = torch.cuda.current_device()
images_size = []
for i in range(len(images)):
images_size.append([])
for j in range(len(images[i])):
images_size[i].append((images[i][j].size()[1] // self.vit_config.patch_size, images[i][j].size()[2] // self.vit_config.patch_size))
images_feats, img_batch_pos = self.vit(pixel_values=images)
a2 = self.vit_config.adaptor_patch_size ** 2
if self.anyres_vit_two_views:
step = 2
else:
step = 1
perceive_fn = lambda x, img_size, is_video: self.perceive(x, img_size, is_video=is_video)
images_list = []
images_fix_i = 0
num_img_batch_pos = len(img_batch_pos)
for i in range(num_img_batch_pos): # batch_id
for j in range(0, len(img_batch_pos[i]), step):
if self.anyres_vit_two_views:
lower_idx, lower_begin, lower_end = img_batch_pos[i][j]
lower_begin = lower_begin * a2
lower_end = lower_end * a2
higher_idx, higher_begin, higher_end = img_batch_pos[i][j + 1]
higher_begin = higher_begin * a2
higher_end = higher_end * a2
lower_res_feat = images_feats[lower_idx, lower_begin:lower_end].unsqueeze(0)
higher_res_feat = images_feats[higher_idx, higher_begin:higher_end].unsqueeze(0)
lower_images_size = images_size[i][j]
higher_images_size = images_size[i][j + 1]
images_list.append(self.perceive(lower_res_feat, lower_images_size, higher_res_feat, higher_images_size))
else:
idx, begin, end = img_batch_pos[i][j]
begin = begin * a2
end = end * a2
is_video = hasattr(images[i][j],'_is_video') and images[i][j]._is_video
images_list.append(perceive_fn(images_feats[idx, begin:end].unsqueeze(0), images_size[i][j], is_video=is_video))
images = torch.cat(images_list, dim=1)
new_batch_pos = []
k = 0; cur_len = 0
for i in range(len(images_size)):
new_batch_pos.append([])
for j in range(0, len(images_size[i]), step):
new_pos = [0, cur_len, cur_len + images_list[k].size(1)]
cur_len += images_list[k].size(1)
k += 1
new_batch_pos[i].append(new_pos)
return images, new_batch_pos
elif self.vit_type == 'Vit-g':
images = self.vit(pixel_values=images, interpolate_pos_encoding=False, img_index=img_index)
else:
assert False, "other vit_types are not supported"
if self.vit_mapping_type == 'mlp':
if self.vit_type in ['Vit-g'] and not self.skip_cls_token:
images = images[:,1:,:]
b, v, d = images.shape
s = int(math.sqrt(v))
images = images.reshape(b, s, s, d)
if self.vit_patch_mlp and img_index is not None:
L_tensor = torch.tensor(img_index)
device = images.device
# 获取子图位置
nonzero_indices = torch.nonzero(L_tensor).squeeze().to(device)
# 获取主图位置
zero_indices = torch.nonzero(L_tensor == 0).squeeze().to(device)
images_nonzero = torch.index_select(images,0, nonzero_indices).to(device)
images_zero = torch.index_select(images, 0, zero_indices).to(device)
# 子图额外多pool一次
pool_rate = self.pool_rate * 2
images_nonzero = images_nonzero.reshape(-1, s // pool_rate, pool_rate, s // pool_rate, pool_rate, d)
images_nonzero = images_nonzero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // pool_rate) * (s // pool_rate), d,
pool_rate*pool_rate).mean(-1)
# 为了组batch折衷方案
images_nonzero = F.pad(images_nonzero, (0, 0, 0, (s // self.pool_rate) * (s // self.pool_rate)- (s // pool_rate) * (s // pool_rate)))
images_zero = images_zero.reshape(-1, s // self.pool_rate, self.pool_rate, s // self.pool_rate, self.pool_rate, d)
images_zero = images_zero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // self.pool_rate) * (s // self.pool_rate), d,
self.pool_rate*self.pool_rate).mean(-1)
# 组batch
images = torch.zeros(b, (s // self.pool_rate) * (s // self.pool_rate), d).to(device).to(images.dtype)
images.index_copy_(0, nonzero_indices, images_nonzero)
images.index_copy_(0, zero_indices, images_zero)
if self.mlp_depth >= 2:
images = self.perceive(images)
else:
if s % self.pool_rate == 0:
images = images.reshape(b, s//self.pool_rate, self.pool_rate, s//self.pool_rate, self.pool_rate, d)
images = images.permute(0, 1, 3, 5, 2, 4).reshape(b, (s//self.pool_rate) * (s//self.pool_rate), d, -1).mean(-1)
if self.mlp_depth >= 2:
images = self.perceive(images)
else:
raise ValueError
return images
class SimpleConvMlp(nn.Module):
def __init__(self, in_channels, out_channels, anyres_pooling_size, vit_used_rms_norm, rms_norm_eps, twoview=False, poolmlp=True, cat_extra_token=True):
super().__init__()
embed_std = 1 / math.sqrt(out_channels)
if poolmlp:
# if args.learnable_mlp_pooling_size is not None:
# in_channels *= args.learnable_mlp_pooling_size ** 2
self.proj = nn.Sequential(
nn.Linear(in_channels, out_channels),
nn.GELU()
)
self.vit_linear_encoder = nn.Linear(out_channels, out_channels)
self.image_newline = nn.Parameter(
torch.randn(out_channels) * embed_std
)
else:
self.proj = nn.Sequential(
nn.Conv2d(in_channels, in_channels * 2, kernel_size=anyres_pooling_size, stride=anyres_pooling_size),
nn.GELU(),
nn.Conv2d(in_channels * 2, in_channels * 4, kernel_size=1),
)
self.mlp = nn.Linear(in_channels * 4, out_channels)
self.image_newline = nn.Parameter(
torch.randn(in_channels * 4) * embed_std
)
self.poolmlp = poolmlp
self.image_begin = nn.Parameter(
torch.randn(out_channels) * embed_std
)
self.image_end = nn.Parameter(
torch.randn(out_channels) * embed_std
)
if twoview:
self.image_sep = nn.Parameter(
torch.randn(out_channels) * embed_std
)
self.cat_extra_token = cat_extra_token
self.use_rms_norm = vit_used_rms_norm
if self.use_rms_norm:
self.before_rms = HunYuanRMSNorm(in_channels, eps=rms_norm_eps)
self.after_rms = HunYuanRMSNorm(out_channels, eps=rms_norm_eps)
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
return self.single_forward(x=x, size=size, x2=x2, size2=size2, is_video=is_video)
def single_forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
remove_vit_special_tokens = False
learnable_mlp_pooling_size = None
if self.use_rms_norm:
x = self.before_rms(x)
h, w = size
dtype = x.dtype
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, h, w)
if self.poolmlp:
if learnable_mlp_pooling_size is None:
x = F.avg_pool2d(x, anyres_pooling_size)
x = self.proj(x.permute(0, 2, 3, 1)) # b, h, w, c
else:
x = x.permute(0, 2, 3, 1) # b, h, w, c
x = x.reshape(x.shape[0], h // learnable_mlp_pooling_size, learnable_mlp_pooling_size,
w // learnable_mlp_pooling_size, learnable_mlp_pooling_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).reshape(x.shape[0], h // learnable_mlp_pooling_size, w // learnable_mlp_pooling_size, -1)
x = self.proj(x)
x = self.vit_linear_encoder(x)
b, h, w, c = x.shape
if not remove_vit_special_tokens:
x = torch.cat([
x,
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype, non_blocking=True)
], dim=2)
x = x.reshape(b, -1, c)
else:
x = self.proj(x) #b,c,h,w
if is_video:
video_avgpool_size = 2
stride = 2
x = F.avg_pool2d(x, kernel_size = video_avgpool_size, stride = stride)
b, c, h, w = x.shape
if not remove_vit_special_tokens:
x = torch.cat([
x,
self.image_newline.reshape(1, c, 1, 1).expand(b, c, h, 1).to(dtype, non_blocking=True)
], dim=-1)
x = x.reshape(b, c, -1).permute(0, 2, 1)
x = self.mlp(x)
if x2 is not None:
h2, w2 = size2
x2 = x2.permute(0, 2, 1).reshape(x2.shape[0], -1, h2, w2)
if self.poolmlp:
x2 = F.avg_pool2d(x2, 2)
x2 = self.proj(x2.permute(0, 2, 3, 1)) # b, h, w, c
x2 = self.vit_linear_encoder(x2)
b2, h2, w2, c2 = x2.shape
if not remove_vit_special_tokens:
x2 = torch.cat([
x2,
self.image_newline.reshape(1, 1, 1, c2).expand(b2, h2, 1, c2).to(dtype, non_blocking=True)
], dim=2)
x2 = x2.reshape(b2, -1, c2)
else:
x2 = self.proj(x2)
b2, c2, h2, w2 = x2.shape
if not remove_vit_special_tokens:
x2 = torch.cat([
x2,
self.image_newline.reshape(1, c2, 1, 1).expand(b2, c2, h2, 1).to(dtype, non_blocking=True)
], dim=-1)
x2 = x2.reshape(b2, c2, -1).permute(0, 2, 1) #b,n,c
x2 = self.mlp(x2)
sep = self.image_sep.reshape(1, 1, -1).expand(b2, 1, x2.shape[-1]).to(dtype, non_blocking=True)
x = torch.cat([x, sep, x2], dim=1)
if self.cat_extra_token:
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
end = self.image_end.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
x = torch.cat([begin, x, end], dim=1)
if self.use_rms_norm:
return self.after_rms(x)
else:
return x
class NormalizedDwPooler(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
self.predictor = nn.Sequential(
nn.Linear(dim*2, dim),
nn.GELU(),
nn.Linear(dim, dim),
)
def forward(self, x, forward_type='2x'):
B, H, W, C = x.shape
if forward_type == '2x':
new_x = x.reshape(B, H//2, 2, W//2, 2, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//2, W//2, 4, C)
pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 4, -1)
fused_x = torch.cat([new_x, pooled_x], dim=-1)
elif forward_type == '1x':
new_x = x.reshape(B, H, W, 1, C)
fused_x = torch.cat([new_x, new_x], dim=-1)
elif forward_type == '4x':
new_x = x.reshape(B, H//4, 4, W//4, 4, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//4, W//4, 16, C)
pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 16, -1)
fused_x = torch.cat([new_x, pooled_x], dim=-1)
score = self.predictor(fused_x)
normalized_score = F.softmax(score, dim=-2)
new_x = (new_x * normalized_score).sum(dim=-2)
return new_x
class OryxMLPv2(nn.Module):
def __init__(self, in_channels, out_channels, twoview=False, use_pe=False):
super().__init__()
self.proj1 = nn.Linear(in_channels, out_channels)
self.proj2 = nn.Linear(out_channels, out_channels)
self.act = nn.GELU()
self.pooler = NormalizedDwPooler(out_channels)
embed_std = 1 / math.sqrt(out_channels)
self.use_pe = use_pe
if not use_pe:
self.image_newline = nn.Parameter(
torch.randn(out_channels) * embed_std
)
self.image_begin = nn.Parameter(
torch.randn(out_channels) * embed_std
)
self.image_end = nn.Parameter(
torch.randn(out_channels) * embed_std
)
if twoview:
self.image_sep = nn.Parameter(
torch.randn(out_channels) * embed_std
)
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
h, w = size
dtype = x.dtype
x = x.reshape(x.shape[0], h, w, -1)
# x = self.pooler(x, forward_type=REGIONAL_POOL)
# x = self.proj(x) #b,h,w, c
x = self.proj1(x)
x = self.pooler(x, forward_type='2x')
x = self.act(x)
x = self.proj2(x)
b, h, w, c = x.shape
if not self.use_pe:
x = torch.cat([
x,
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype)
], dim=2)
else:
pe_h = torch.arange(h, dtype=torch.long, device=x.device).reshape(1, h, 1, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
pe_w = torch.arange(w, dtype=torch.long, device=x.device).reshape(1, 1, w, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
pe = torch.cat([pe_h, pe_w], dim=-1)
x = x.reshape(b, -1, c)
if x2 is not None:
h2, w2 = size2
x2 = x2.reshape(x2.shape[0], h2, w2, -1)
# x2 = self.pooler(x2, forward_type=REGIONAL_POOL)
## x2 = self.proj(x2) #b,h,w, c
x2 = self.proj1(x2)
x2 = self.pooler(x2, forward_type='2x')
x2 = self.act(x2)
x2 = self.proj2(x2)
b2, h2, w2, c2 = x2.shape
if not self.use_pe:
x2 = torch.cat([
x2,
self.image_newline.reshape(1, 1, 1, c).expand(b, h2, 1, c).to(dtype)
], dim=2)
x2 = x2.reshape(b, -1, c)
sep = self.image_sep.reshape(1, 1, -1).expand(b, 1, c2).to(dtype)
x = torch.cat([x, sep, x2], dim=1)
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
end = self.image_end.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
x = torch.cat([begin, x, end], dim=1)
# print(x.shape, x2.shape, h, w, h2, w2)
# print("vit rank = " + str(torch.distributed.get_rank()) +" x = " + str(x))
if self.use_pe:
zero_pad = torch.zeros(b, 1, 2, device=x.device, dtype=torch.long)
pe = torch.cat([zero_pad, pe, zero_pad], dim=1)
assert pe.shape[1] == x.shape[1]
return x, pe
else:
nseq = x.shape[1]
fake_pe = torch.zeros(b, nseq, 2, device=x.device, dtype=torch.long)
return x #, fake_pe