update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: model_en
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# model_en
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.8610
|
18 |
+
- Wer: 0.2641
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 2
|
42 |
+
- total_train_batch_size: 8
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 1000
|
46 |
+
- num_epochs: 200
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
52 |
+
| 6.3443 | 3.05 | 250 | 3.0966 | 1.0 |
|
53 |
+
| 2.9847 | 6.1 | 500 | 3.0603 | 1.0 |
|
54 |
+
| 2.9263 | 9.15 | 750 | 2.9131 | 1.0 |
|
55 |
+
| 2.2584 | 12.19 | 1000 | 1.4318 | 0.6575 |
|
56 |
+
| 1.2603 | 15.24 | 1250 | 1.1964 | 0.4994 |
|
57 |
+
| 0.9182 | 18.29 | 1500 | 1.1494 | 0.4485 |
|
58 |
+
| 0.7462 | 21.34 | 1750 | 1.2171 | 0.4357 |
|
59 |
+
| 0.6129 | 24.39 | 2000 | 1.0557 | 0.3468 |
|
60 |
+
| 0.5364 | 27.44 | 2250 | 1.1069 | 0.4222 |
|
61 |
+
| 0.4607 | 30.48 | 2500 | 1.3270 | 0.3370 |
|
62 |
+
| 0.4139 | 33.53 | 2750 | 1.1814 | 0.3658 |
|
63 |
+
| 0.3587 | 36.58 | 3000 | 1.2423 | 0.3419 |
|
64 |
+
| 0.321 | 39.63 | 3250 | 1.2931 | 0.3211 |
|
65 |
+
| 0.2961 | 42.68 | 3500 | 1.1409 | 0.3315 |
|
66 |
+
| 0.2635 | 45.73 | 3750 | 1.4537 | 0.3241 |
|
67 |
+
| 0.2498 | 48.78 | 4000 | 1.2643 | 0.3192 |
|
68 |
+
| 0.2352 | 51.82 | 4250 | 1.2789 | 0.3278 |
|
69 |
+
| 0.2193 | 54.87 | 4500 | 1.4220 | 0.3021 |
|
70 |
+
| 0.2068 | 57.92 | 4750 | 1.3567 | 0.3713 |
|
71 |
+
| 0.2055 | 60.97 | 5000 | 1.5375 | 0.3051 |
|
72 |
+
| 0.198 | 64.02 | 5250 | 1.2676 | 0.2782 |
|
73 |
+
| 0.1835 | 67.07 | 5500 | 1.3905 | 0.2825 |
|
74 |
+
| 0.1655 | 70.12 | 5750 | 1.7000 | 0.2978 |
|
75 |
+
| 0.1677 | 73.17 | 6000 | 1.4250 | 0.2812 |
|
76 |
+
| 0.1522 | 76.22 | 6250 | 1.4220 | 0.2941 |
|
77 |
+
| 0.1522 | 79.27 | 6500 | 1.5195 | 0.3021 |
|
78 |
+
| 0.1344 | 82.32 | 6750 | 1.3749 | 0.2996 |
|
79 |
+
| 0.1298 | 85.36 | 7000 | 1.6663 | 0.2849 |
|
80 |
+
| 0.1293 | 88.41 | 7250 | 1.4564 | 0.2892 |
|
81 |
+
| 0.1264 | 91.46 | 7500 | 1.4373 | 0.2935 |
|
82 |
+
| 0.1243 | 94.51 | 7750 | 1.6572 | 0.2972 |
|
83 |
+
| 0.1141 | 97.56 | 8000 | 1.4936 | 0.2892 |
|
84 |
+
| 0.1086 | 100.61 | 8250 | 1.5231 | 0.2868 |
|
85 |
+
| 0.1056 | 103.65 | 8500 | 1.3733 | 0.2763 |
|
86 |
+
| 0.098 | 106.7 | 8750 | 1.4887 | 0.2923 |
|
87 |
+
| 0.0984 | 109.75 | 9000 | 1.3779 | 0.2923 |
|
88 |
+
| 0.0916 | 112.8 | 9250 | 1.4868 | 0.2604 |
|
89 |
+
| 0.0881 | 115.85 | 9500 | 1.7991 | 0.2996 |
|
90 |
+
| 0.0846 | 118.9 | 9750 | 1.5845 | 0.2849 |
|
91 |
+
| 0.0861 | 121.95 | 10000 | 1.6684 | 0.2794 |
|
92 |
+
| 0.0806 | 124.99 | 10250 | 1.5774 | 0.3039 |
|
93 |
+
| 0.0822 | 128.05 | 10500 | 1.5928 | 0.2886 |
|
94 |
+
| 0.0788 | 131.1 | 10750 | 1.6158 | 0.2880 |
|
95 |
+
| 0.0704 | 134.15 | 11000 | 1.7679 | 0.2941 |
|
96 |
+
| 0.0721 | 137.19 | 11250 | 1.7055 | 0.2629 |
|
97 |
+
| 0.0723 | 140.24 | 11500 | 1.5473 | 0.2653 |
|
98 |
+
| 0.0676 | 143.29 | 11750 | 1.8963 | 0.2745 |
|
99 |
+
| 0.0665 | 146.34 | 12000 | 1.6367 | 0.2739 |
|
100 |
+
| 0.0618 | 149.39 | 12250 | 1.6757 | 0.2745 |
|
101 |
+
| 0.0595 | 152.44 | 12500 | 1.5900 | 0.2745 |
|
102 |
+
| 0.056 | 155.48 | 12750 | 1.5362 | 0.2794 |
|
103 |
+
| 0.0587 | 158.53 | 13000 | 1.4616 | 0.2684 |
|
104 |
+
| 0.0519 | 161.58 | 13250 | 1.6867 | 0.2549 |
|
105 |
+
| 0.0569 | 164.63 | 13500 | 1.8294 | 0.2574 |
|
106 |
+
| 0.0497 | 167.68 | 13750 | 1.7844 | 0.2868 |
|
107 |
+
| 0.0531 | 170.73 | 14000 | 1.7564 | 0.2770 |
|
108 |
+
| 0.0489 | 173.78 | 14250 | 1.5811 | 0.2629 |
|
109 |
+
| 0.0524 | 176.82 | 14500 | 1.6925 | 0.2684 |
|
110 |
+
| 0.0431 | 179.87 | 14750 | 1.7236 | 0.2653 |
|
111 |
+
| 0.0457 | 182.92 | 15000 | 1.7460 | 0.2512 |
|
112 |
+
| 0.045 | 185.97 | 15250 | 1.8096 | 0.2610 |
|
113 |
+
| 0.0402 | 189.02 | 15500 | 1.8795 | 0.2635 |
|
114 |
+
| 0.0529 | 192.07 | 15750 | 1.8310 | 0.2616 |
|
115 |
+
| 0.0396 | 195.12 | 16000 | 1.8380 | 0.2635 |
|
116 |
+
| 0.0432 | 198.17 | 16250 | 1.8610 | 0.2641 |
|
117 |
+
|
118 |
+
|
119 |
+
### Framework versions
|
120 |
+
|
121 |
+
- Transformers 4.11.3
|
122 |
+
- Pytorch 1.9.0
|
123 |
+
- Datasets 1.13.3
|
124 |
+
- Tokenizers 0.10.3
|