Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,74 +1,48 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
| 8 |
-
.
|
| 9 |
-
βββ data/ # Dataset storage
|
| 10 |
-
βββ models/ # Saved model files
|
| 11 |
-
βββ src/ # Source code
|
| 12 |
-
β βββ data_preparation.py
|
| 13 |
-
β βββ model.py
|
| 14 |
-
β βββ training.py
|
| 15 |
-
β βββ evaluation.py
|
| 16 |
-
β βββ deployment.py
|
| 17 |
-
βββ notebooks/ # Jupyter notebooks for exploration
|
| 18 |
-
βββ requirements.txt # Project dependencies
|
| 19 |
-
βββ README.md # Project documentation
|
| 20 |
-
```
|
| 21 |
-
|
| 22 |
-
## Setup Instructions
|
| 23 |
-
|
| 24 |
-
1. Create a virtual environment:
|
| 25 |
-
```bash
|
| 26 |
-
python -m venv venv
|
| 27 |
-
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 28 |
-
```
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
3. Run the training pipeline:
|
| 36 |
-
```bash
|
| 37 |
-
python src/training.py
|
| 38 |
-
```
|
| 39 |
|
| 40 |
-
##
|
| 41 |
|
| 42 |
-
|
| 43 |
-
- Data augmentation techniques
|
| 44 |
-
- Model evaluation and hyperparameter tuning
|
| 45 |
-
- Model deployment pipeline
|
| 46 |
-
- Performance monitoring
|
| 47 |
|
| 48 |
-
##
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
- Data augmentation
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
- Layer configuration
|
| 58 |
-
- Activation functions
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
5. Deployment
|
| 72 |
-
- Model saving
|
| 73 |
-
- Inference pipeline
|
| 74 |
-
- Performance monitoring
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- tensorflow
|
| 6 |
+
- image-classification
|
| 7 |
+
- mnist
|
| 8 |
+
- digits
|
| 9 |
+
datasets:
|
| 10 |
+
- mnist
|
| 11 |
+
metrics:
|
| 12 |
+
- accuracy
|
| 13 |
+
---
|
| 14 |
|
| 15 |
+
# Digit Recognition Model
|
| 16 |
|
| 17 |
+
This model is trained to recognize handwritten digits from the MNIST dataset.
|
| 18 |
|
| 19 |
+
## Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
- **Model Type:** CNN with Attention
|
| 22 |
+
- **Task:** Image Classification
|
| 23 |
+
- **Input:** 28x28 grayscale images
|
| 24 |
+
- **Output:** Digit classification (0-9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
## Training
|
| 27 |
|
| 28 |
+
The model was trained on the MNIST dataset using a CNN architecture with attention mechanisms.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
## Usage
|
| 31 |
|
| 32 |
+
```python
|
| 33 |
+
import tensorflow as tf
|
| 34 |
+
import numpy as np
|
|
|
|
| 35 |
|
| 36 |
+
# Load the model
|
| 37 |
+
model = tf.saved_model.load("path_to_saved_model")
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# Prepare input
|
| 40 |
+
image = tf.keras.preprocessing.image.load_img("digit.png", target_size=(28, 28))
|
| 41 |
+
image = tf.keras.preprocessing.image.img_to_array(image)
|
| 42 |
+
image = image.astype('float32') / 255.0
|
| 43 |
+
image = np.expand_dims(image, axis=0)
|
| 44 |
|
| 45 |
+
# Make prediction
|
| 46 |
+
predictions = model(image)
|
| 47 |
+
predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
|
| 48 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|