Delete attention.py
Browse files- attention.py +0 -770
attention.py
DELETED
|
@@ -1,770 +0,0 @@
|
|
| 1 |
-
# Adapted from https://github.com/mosaicml/llm-foundry
|
| 2 |
-
# Classes changed: MultiheadAttention
|
| 3 |
-
# Functions changed: scaled_multihead_dot_product_attention, build_alibi_bias, build_attn_bias
|
| 4 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
-
|
| 6 |
-
"""Attention layers."""
|
| 7 |
-
import math
|
| 8 |
-
import warnings
|
| 9 |
-
from typing import Optional
|
| 10 |
-
import torch
|
| 11 |
-
import torch.nn as nn
|
| 12 |
-
from einops import rearrange
|
| 13 |
-
from packaging import version
|
| 14 |
-
from torch import nn
|
| 15 |
-
from torch.linalg import vector_norm
|
| 16 |
-
from llmfoundry.models.layers.norm import LPLayerNorm
|
| 17 |
-
from torch.nn import functional as F
|
| 18 |
-
|
| 19 |
-
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int,
|
| 20 |
-
original_is_causal: bool):
|
| 21 |
-
# disable causal when it is not needed
|
| 22 |
-
# necessary for flash & triton for generation with kv_cache
|
| 23 |
-
if original_is_causal and num_query_tokens != num_key_tokens:
|
| 24 |
-
if num_query_tokens != 1:
|
| 25 |
-
raise NotImplementedError(
|
| 26 |
-
'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.'
|
| 27 |
-
)
|
| 28 |
-
else:
|
| 29 |
-
return False
|
| 30 |
-
return original_is_causal
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def scaled_multihead_dot_product_attention(
|
| 34 |
-
query,
|
| 35 |
-
key,
|
| 36 |
-
value,
|
| 37 |
-
n_heads,
|
| 38 |
-
past_key_value=None,
|
| 39 |
-
long_range_past_key_value=None,
|
| 40 |
-
softmax_scale=None,
|
| 41 |
-
attn_bias=None,
|
| 42 |
-
attn_bias_ae=None,
|
| 43 |
-
key_padding_mask=None,
|
| 44 |
-
is_causal=False,
|
| 45 |
-
dropout_p=0.0,
|
| 46 |
-
training=False,
|
| 47 |
-
needs_weights=False,
|
| 48 |
-
multiquery=False,
|
| 49 |
-
topk=None,
|
| 50 |
-
faiss_indexes=None,
|
| 51 |
-
n_layers=None,
|
| 52 |
-
current_layer=None,
|
| 53 |
-
mask_by_sim=False,
|
| 54 |
-
sim_threshold=0.0
|
| 55 |
-
):
|
| 56 |
-
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
| 57 |
-
kv_n_heads = 1 if multiquery else n_heads
|
| 58 |
-
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
| 59 |
-
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
| 60 |
-
|
| 61 |
-
had_kv=False
|
| 62 |
-
if past_key_value is not None:
|
| 63 |
-
# attn_impl: flash & triton use kernels which expect input shape [b, s, h, d_head].
|
| 64 |
-
# kv_cache is therefore stored using that shape.
|
| 65 |
-
# attn_impl: torch stores the kv_cache in the ordering which is most advantageous
|
| 66 |
-
# for its attn computation ie
|
| 67 |
-
# keys are stored as tensors with shape [b, h, d_head, s] and
|
| 68 |
-
# values are stored as tensors with shape [b, h, s, d_head]
|
| 69 |
-
if len(past_key_value) != 0:
|
| 70 |
-
k = torch.cat([past_key_value[0], k], dim=3)
|
| 71 |
-
v = torch.cat([past_key_value[1], v], dim=2)
|
| 72 |
-
had_kv=True
|
| 73 |
-
|
| 74 |
-
past_key_value = (k, v)
|
| 75 |
-
|
| 76 |
-
b, h, s_q, d = q.shape
|
| 77 |
-
s_k = k.size(-1)
|
| 78 |
-
|
| 79 |
-
if softmax_scale is None:
|
| 80 |
-
softmax_scale = 1 / math.sqrt(d)
|
| 81 |
-
|
| 82 |
-
attn_weight = q.matmul(k) * softmax_scale
|
| 83 |
-
|
| 84 |
-
if attn_bias is not None:
|
| 85 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
| 86 |
-
_s_q = max(0, attn_bias.size(2) - s_q)
|
| 87 |
-
_s_k = max(0, attn_bias.size(3) - s_k)
|
| 88 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
| 89 |
-
|
| 90 |
-
if (attn_bias.size(-1) != 1 and
|
| 91 |
-
attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and
|
| 92 |
-
attn_bias.size(-2) != s_q):
|
| 93 |
-
raise RuntimeError(
|
| 94 |
-
f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
|
| 95 |
-
)
|
| 96 |
-
attn_weight = attn_weight + attn_bias
|
| 97 |
-
|
| 98 |
-
if needs_weights: #will return memory indices w/attention weights
|
| 99 |
-
reshaped_idx = None
|
| 100 |
-
if long_range_past_key_value is not None or faiss_indexes is not None:
|
| 101 |
-
if long_range_past_key_value is not None: #manual memories
|
| 102 |
-
|
| 103 |
-
k_cache, v_cache = long_range_past_key_value
|
| 104 |
-
s_cache = k_cache.size(-1)
|
| 105 |
-
|
| 106 |
-
k_cache = k_cache.to(k.device)
|
| 107 |
-
v_cache = v_cache.to(k.device)
|
| 108 |
-
|
| 109 |
-
q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True)
|
| 110 |
-
k_n = k_cache/vector_norm(k_cache, ord=2, dim=-2, keepdim=True)
|
| 111 |
-
|
| 112 |
-
sim = q_n.matmul(k_n)
|
| 113 |
-
if s_cache<topk:
|
| 114 |
-
topk = s_cache #number of tokens in cache < topk
|
| 115 |
-
val, idx = torch.topk(sim, k=topk, dim=-1)
|
| 116 |
-
|
| 117 |
-
reshaped_idx = idx.reshape(b, h, s_q * topk)
|
| 118 |
-
|
| 119 |
-
selected_k = k_cache.gather(dim=-1, index=reshaped_idx.unsqueeze(-2).expand(-1, -1, d, -1))
|
| 120 |
-
selected_v = v_cache.gather(dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d))
|
| 121 |
-
|
| 122 |
-
sim_mask = rearrange(~ (val > sim_threshold).bool(), 'b h s i -> b h (s i)').unsqueeze(-2).expand(-1, -1, s_q, -1)
|
| 123 |
-
min_val = torch.finfo(selected_k.dtype).min
|
| 124 |
-
|
| 125 |
-
elif faiss_indexes is not None: #faiss indexes
|
| 126 |
-
|
| 127 |
-
kn_index, kv_index = faiss_indexes
|
| 128 |
-
q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True)
|
| 129 |
-
|
| 130 |
-
one_hot_encodings = F.one_hot(torch.arange(0, n_heads*n_layers, device=q.device))*10
|
| 131 |
-
q_n = torch.concat([rearrange(q_n, 'b h s d -> b (h s) d', h=n_heads), one_hot_encodings[n_heads*current_layer:n_heads*(current_layer+1)].unsqueeze(0).repeat_interleave(repeats=q.size(-2), dim=-2)], dim=-1).squeeze()
|
| 132 |
-
|
| 133 |
-
D, I = kn_index.search(q_n.to('cpu').numpy(), k=topk)
|
| 134 |
-
|
| 135 |
-
selected_k=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,:d], '(h s) d -> 1 h d s', h=32).to(q.device)
|
| 136 |
-
selected_v=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,d:], '(h s) d -> 1 h s d', h=32).to(q.device)
|
| 137 |
-
|
| 138 |
-
s_k_ae = selected_k.size(-1)
|
| 139 |
-
s_k += s_k_ae
|
| 140 |
-
attn_weight_cache = q.matmul(selected_k) * softmax_scale
|
| 141 |
-
if mask_by_sim:
|
| 142 |
-
attn_weight_cache = attn_weight_cache.masked_fill(sim_mask, min_val)
|
| 143 |
-
|
| 144 |
-
if attn_bias_ae is not None: #add alibi bias to memories
|
| 145 |
-
_s_q = max(0, attn_bias_ae.size(2) - s_q)
|
| 146 |
-
_s_k = max(0, attn_bias_ae.size(3) - s_k_ae)
|
| 147 |
-
attn_bias_ae = attn_bias_ae[:, :, _s_q:, _s_k:]
|
| 148 |
-
|
| 149 |
-
if (attn_bias_ae.size(-1) != 1 and
|
| 150 |
-
attn_bias_ae.size(-1) != s_k_ae) or (attn_bias_ae.size(-2) != 1 and
|
| 151 |
-
attn_bias_ae.size(-2) != s_q):
|
| 152 |
-
raise RuntimeError(
|
| 153 |
-
f'attn_bias (shape: {attn_bias_ae.shape}) is expected to broadcast to shape: {attn_weight_cache.shape}.'
|
| 154 |
-
)
|
| 155 |
-
attn_weight_cache = attn_weight_cache + attn_bias_ae
|
| 156 |
-
|
| 157 |
-
attn_weight = torch.cat([attn_weight_cache, attn_weight], dim=-1)
|
| 158 |
-
v = torch.cat([selected_v, v], dim=-2)
|
| 159 |
-
|
| 160 |
-
min_val = torch.finfo(q.dtype).min
|
| 161 |
-
|
| 162 |
-
if key_padding_mask is not None:
|
| 163 |
-
if attn_bias is not None:
|
| 164 |
-
warnings.warn(
|
| 165 |
-
'Propogating key_padding_mask to the attention module ' +\
|
| 166 |
-
'and applying it within the attention module can cause ' +\
|
| 167 |
-
'unneccessary computation/memory usage. Consider integrating ' +\
|
| 168 |
-
'into attn_bias once and passing that to each attention ' +\
|
| 169 |
-
'module instead.'
|
| 170 |
-
)
|
| 171 |
-
attn_weight = attn_weight.masked_fill(
|
| 172 |
-
~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
| 173 |
-
|
| 174 |
-
def _create_active_externalism_mask(k, s_q, device):
|
| 175 |
-
mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool)
|
| 176 |
-
for i in range(s_q):
|
| 177 |
-
mask[i, i * k : (i + 1) * k] = 1
|
| 178 |
-
return ~mask
|
| 179 |
-
|
| 180 |
-
if is_causal and (not q.size(2) == 1):
|
| 181 |
-
s = max(s_q, s_k)
|
| 182 |
-
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
| 183 |
-
causal_mask = causal_mask.tril()
|
| 184 |
-
causal_mask = causal_mask.to(torch.bool)
|
| 185 |
-
causal_mask = ~causal_mask
|
| 186 |
-
causal_mask = causal_mask[-s_q:, -s_k:]
|
| 187 |
-
|
| 188 |
-
if long_range_past_key_value is not None:
|
| 189 |
-
mask = _create_active_externalism_mask(k=topk,s_q=s_q, device=attn_weight.device)
|
| 190 |
-
s=s_q
|
| 191 |
-
if had_kv:
|
| 192 |
-
s += (past_key_value[0][0].size(-1) -s_q)
|
| 193 |
-
causal_mask = torch.cat([mask, causal_mask[:,-s:]], dim=1)
|
| 194 |
-
|
| 195 |
-
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
|
| 196 |
-
min_val)
|
| 197 |
-
|
| 198 |
-
attn_weight = torch.softmax(attn_weight, dim=-1)
|
| 199 |
-
|
| 200 |
-
if dropout_p:
|
| 201 |
-
attn_weight = torch.nn.functional.dropout(attn_weight,
|
| 202 |
-
p=dropout_p,
|
| 203 |
-
training=training,
|
| 204 |
-
inplace=True)
|
| 205 |
-
|
| 206 |
-
out = attn_weight.to(v.dtype).matmul(v)
|
| 207 |
-
out = rearrange(out, 'b h s d -> b s (h d)')
|
| 208 |
-
|
| 209 |
-
if needs_weights:
|
| 210 |
-
return out, attn_weight, past_key_value, reshaped_idx
|
| 211 |
-
return out, None, past_key_value, None
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
| 215 |
-
for tensor in tensors:
|
| 216 |
-
if tensor.dtype not in valid_dtypes:
|
| 217 |
-
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
|
| 218 |
-
if not tensor.is_cuda:
|
| 219 |
-
raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).')
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
def flash_attn_fn(
|
| 223 |
-
query,
|
| 224 |
-
key,
|
| 225 |
-
value,
|
| 226 |
-
n_heads,
|
| 227 |
-
past_key_value=None,
|
| 228 |
-
softmax_scale=None,
|
| 229 |
-
attn_bias=None,
|
| 230 |
-
key_padding_mask=None,
|
| 231 |
-
is_causal=False,
|
| 232 |
-
dropout_p=0.0,
|
| 233 |
-
training=False,
|
| 234 |
-
needs_weights=False,
|
| 235 |
-
multiquery=False,
|
| 236 |
-
):
|
| 237 |
-
try:
|
| 238 |
-
from flash_attn import bert_padding, flash_attn_interface # type: ignore # yapf: disable # isort: skip
|
| 239 |
-
except:
|
| 240 |
-
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
| 241 |
-
|
| 242 |
-
check_valid_inputs(query, key, value)
|
| 243 |
-
|
| 244 |
-
if past_key_value is not None:
|
| 245 |
-
if len(past_key_value) != 0:
|
| 246 |
-
key = torch.cat([past_key_value[0], key], dim=1)
|
| 247 |
-
value = torch.cat([past_key_value[1], value], dim=1)
|
| 248 |
-
|
| 249 |
-
past_key_value = (key, value)
|
| 250 |
-
|
| 251 |
-
if attn_bias is not None:
|
| 252 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
| 253 |
-
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
| 254 |
-
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
| 255 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
| 256 |
-
|
| 257 |
-
if attn_bias is not None:
|
| 258 |
-
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
| 259 |
-
|
| 260 |
-
batch_size, seqlen = query.shape[:2]
|
| 261 |
-
|
| 262 |
-
if key_padding_mask is None:
|
| 263 |
-
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
| 264 |
-
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
| 265 |
-
|
| 266 |
-
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
|
| 267 |
-
query, query_padding_mask)
|
| 268 |
-
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
| 269 |
-
|
| 270 |
-
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
|
| 271 |
-
key, key_padding_mask)
|
| 272 |
-
key_unpad = rearrange(key_unpad,
|
| 273 |
-
'nnz (h d) -> nnz h d',
|
| 274 |
-
h=1 if multiquery else n_heads)
|
| 275 |
-
|
| 276 |
-
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
|
| 277 |
-
value_unpad = rearrange(value_unpad,
|
| 278 |
-
'nnz (h d) -> nnz h d',
|
| 279 |
-
h=1 if multiquery else n_heads)
|
| 280 |
-
|
| 281 |
-
if multiquery:
|
| 282 |
-
# Expanding a tensor does not allocate new memory, but only creates a new
|
| 283 |
-
# view on the existing tensor where a dimension of size one is expanded
|
| 284 |
-
# to a larger size by setting the stride to 0.
|
| 285 |
-
# - pytorch docs
|
| 286 |
-
#
|
| 287 |
-
# hopefully the kernels can utilize this and we're jot just wasting BW here
|
| 288 |
-
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads,
|
| 289 |
-
key_unpad.size(-1))
|
| 290 |
-
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads,
|
| 291 |
-
value_unpad.size(-1))
|
| 292 |
-
|
| 293 |
-
dropout_p = dropout_p if training else 0.0
|
| 294 |
-
|
| 295 |
-
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
| 296 |
-
|
| 297 |
-
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
|
| 298 |
-
query_unpad,
|
| 299 |
-
key_unpad,
|
| 300 |
-
value_unpad,
|
| 301 |
-
cu_seqlens_q,
|
| 302 |
-
cu_seqlens_k,
|
| 303 |
-
max_seqlen_q,
|
| 304 |
-
max_seqlen_k,
|
| 305 |
-
dropout_p,
|
| 306 |
-
softmax_scale=softmax_scale,
|
| 307 |
-
causal=reset_is_causal,
|
| 308 |
-
return_attn_probs=needs_weights)
|
| 309 |
-
|
| 310 |
-
output = bert_padding.pad_input(
|
| 311 |
-
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
|
| 312 |
-
seqlen)
|
| 313 |
-
return output, None, past_key_value
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
def triton_flash_attn_fn(
|
| 317 |
-
query,
|
| 318 |
-
key,
|
| 319 |
-
value,
|
| 320 |
-
n_heads,
|
| 321 |
-
past_key_value=None,
|
| 322 |
-
softmax_scale=None,
|
| 323 |
-
attn_bias=None,
|
| 324 |
-
key_padding_mask=None,
|
| 325 |
-
is_causal=False,
|
| 326 |
-
dropout_p=0.0,
|
| 327 |
-
training=False,
|
| 328 |
-
needs_weights=False,
|
| 329 |
-
multiquery=False,
|
| 330 |
-
):
|
| 331 |
-
try:
|
| 332 |
-
from llmfoundry.models.layers.flash_attn_triton import flash_attn_func
|
| 333 |
-
except:
|
| 334 |
-
_installed = False
|
| 335 |
-
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
| 336 |
-
_installed = True
|
| 337 |
-
# if torch1.13.1 revert to using triton flash attn from HazyResearch
|
| 338 |
-
# with flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202
|
| 339 |
-
try:
|
| 340 |
-
from flash_attn.flash_attn_triton import flash_attn_func
|
| 341 |
-
except:
|
| 342 |
-
_installed = False
|
| 343 |
-
if not _installed:
|
| 344 |
-
# installing triton-pre-mlir works for both torch1.13.1 and torch2.0+
|
| 345 |
-
# default recommendation is to install this variant
|
| 346 |
-
raise RuntimeError(
|
| 347 |
-
'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU '
|
| 348 |
-
'and `pip install .[gpu]` if installing from llm-foundry source or '
|
| 349 |
-
'`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` '
|
| 350 |
-
'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). '
|
| 351 |
-
'Note: (1) requires you have CMake and PyTorch already installed.'
|
| 352 |
-
)
|
| 353 |
-
|
| 354 |
-
check_valid_inputs(query, key, value)
|
| 355 |
-
|
| 356 |
-
if past_key_value is not None:
|
| 357 |
-
if len(past_key_value) != 0:
|
| 358 |
-
key = torch.cat([past_key_value[0], key], dim=1)
|
| 359 |
-
value = torch.cat([past_key_value[1], value], dim=1)
|
| 360 |
-
|
| 361 |
-
past_key_value = (key, value)
|
| 362 |
-
|
| 363 |
-
if attn_bias is not None:
|
| 364 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
| 365 |
-
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
| 366 |
-
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
| 367 |
-
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
| 368 |
-
|
| 369 |
-
if dropout_p:
|
| 370 |
-
raise NotImplementedError(
|
| 371 |
-
f'Dropout not implemented for attn_impl: triton.')
|
| 372 |
-
|
| 373 |
-
if needs_weights:
|
| 374 |
-
raise NotImplementedError(
|
| 375 |
-
f'attn_impl: triton cannot return attn weights.')
|
| 376 |
-
|
| 377 |
-
if key_padding_mask is not None:
|
| 378 |
-
warnings.warn(
|
| 379 |
-
'Propagating key_padding_mask to the attention module ' +\
|
| 380 |
-
'and applying it within the attention module can cause ' +\
|
| 381 |
-
'unnecessary computation/memory usage. Consider integrating ' +\
|
| 382 |
-
'into attn_bias once and passing that to each attention ' +\
|
| 383 |
-
'module instead.'
|
| 384 |
-
)
|
| 385 |
-
b_size, s_k = key_padding_mask.shape[:2]
|
| 386 |
-
|
| 387 |
-
if attn_bias is None:
|
| 388 |
-
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
| 389 |
-
|
| 390 |
-
attn_bias = attn_bias.masked_fill(
|
| 391 |
-
~key_padding_mask.view((b_size, 1, 1, s_k)),
|
| 392 |
-
torch.finfo(query.dtype).min)
|
| 393 |
-
|
| 394 |
-
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
| 395 |
-
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
| 396 |
-
value = rearrange(value,
|
| 397 |
-
'b s (h d) -> b s h d',
|
| 398 |
-
h=1 if multiquery else n_heads)
|
| 399 |
-
|
| 400 |
-
if multiquery:
|
| 401 |
-
# Expanding a tensor does not allocate new memory, but only creates a new
|
| 402 |
-
# view on the existing tensor where a dimension of size one is expanded
|
| 403 |
-
# to a larger size by setting the stride to 0.
|
| 404 |
-
# - pytorch docs
|
| 405 |
-
#
|
| 406 |
-
# hopefully the kernels can utilize this and we're jot just wasting BW here
|
| 407 |
-
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
| 408 |
-
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
| 409 |
-
|
| 410 |
-
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
| 411 |
-
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal,
|
| 412 |
-
softmax_scale)
|
| 413 |
-
|
| 414 |
-
output = attn_output.view(*attn_output.shape[:2], -1)
|
| 415 |
-
|
| 416 |
-
return output, None, past_key_value
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
class MultiheadAttention(nn.Module):
|
| 420 |
-
"""Multi-head self attention.
|
| 421 |
-
|
| 422 |
-
Using torch or triton attention implemetation enables user to also use
|
| 423 |
-
additive bias.
|
| 424 |
-
"""
|
| 425 |
-
|
| 426 |
-
def __init__(
|
| 427 |
-
self,
|
| 428 |
-
d_model: int,
|
| 429 |
-
n_heads: int,
|
| 430 |
-
attn_impl: str = 'triton',
|
| 431 |
-
clip_qkv: Optional[float] = None,
|
| 432 |
-
qk_ln: bool = False,
|
| 433 |
-
softmax_scale: Optional[float] = None,
|
| 434 |
-
attn_pdrop: float = 0.0,
|
| 435 |
-
low_precision_layernorm: bool = False,
|
| 436 |
-
verbose: int = 0,
|
| 437 |
-
device: Optional[str] = None,
|
| 438 |
-
):
|
| 439 |
-
super().__init__()
|
| 440 |
-
|
| 441 |
-
self.attn_impl = attn_impl
|
| 442 |
-
self.clip_qkv = clip_qkv
|
| 443 |
-
self.qk_ln = qk_ln
|
| 444 |
-
|
| 445 |
-
self.d_model = d_model
|
| 446 |
-
self.n_heads = n_heads
|
| 447 |
-
self.softmax_scale = softmax_scale
|
| 448 |
-
if self.softmax_scale is None:
|
| 449 |
-
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
| 450 |
-
self.attn_dropout_p = attn_pdrop
|
| 451 |
-
|
| 452 |
-
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
| 453 |
-
# for param init fn; enables shape based init of fused layers
|
| 454 |
-
fuse_splits = (d_model, 2 * d_model)
|
| 455 |
-
self.Wqkv._fused = (0, fuse_splits) # type: ignore
|
| 456 |
-
|
| 457 |
-
if self.qk_ln:
|
| 458 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
| 459 |
-
self.q_ln = layernorm_class(self.d_model, device=device)
|
| 460 |
-
self.k_ln = layernorm_class(self.d_model, device=device)
|
| 461 |
-
|
| 462 |
-
if self.attn_impl == 'flash':
|
| 463 |
-
self.attn_fn = flash_attn_fn
|
| 464 |
-
elif self.attn_impl == 'triton':
|
| 465 |
-
self.attn_fn = triton_flash_attn_fn
|
| 466 |
-
if verbose:
|
| 467 |
-
warnings.warn(
|
| 468 |
-
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
|
| 469 |
-
'it uses more memory. When training larger models this can trigger ' +\
|
| 470 |
-
'alloc retries which hurts performance. If encountered, we recommend ' +\
|
| 471 |
-
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
|
| 472 |
-
)
|
| 473 |
-
elif self.attn_impl == 'torch':
|
| 474 |
-
self.attn_fn = scaled_multihead_dot_product_attention
|
| 475 |
-
if torch.cuda.is_available() and verbose:
|
| 476 |
-
warnings.warn(
|
| 477 |
-
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
|
| 478 |
-
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
|
| 479 |
-
'we recommend using `attn_impl: triton`.'
|
| 480 |
-
)
|
| 481 |
-
else:
|
| 482 |
-
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
| 483 |
-
|
| 484 |
-
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
| 485 |
-
self.out_proj._is_residual = True # type: ignore
|
| 486 |
-
|
| 487 |
-
def forward(
|
| 488 |
-
self,
|
| 489 |
-
x,
|
| 490 |
-
past_key_value=None,
|
| 491 |
-
long_range_past_key_value=None,
|
| 492 |
-
attn_bias=None,
|
| 493 |
-
attn_bias_ae=None,
|
| 494 |
-
attention_mask=None,
|
| 495 |
-
is_causal=True,
|
| 496 |
-
needs_weights=False,
|
| 497 |
-
topk=None,
|
| 498 |
-
faiss_indexes=None,
|
| 499 |
-
n_layers=None,
|
| 500 |
-
current_layer=None,
|
| 501 |
-
mask_by_sim=None,
|
| 502 |
-
sim_threshold=None
|
| 503 |
-
):
|
| 504 |
-
qkv = self.Wqkv(x)
|
| 505 |
-
|
| 506 |
-
if self.clip_qkv:
|
| 507 |
-
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
| 508 |
-
|
| 509 |
-
query, key, value = qkv.chunk(3, dim=2)
|
| 510 |
-
|
| 511 |
-
key_padding_mask = attention_mask
|
| 512 |
-
|
| 513 |
-
if self.qk_ln:
|
| 514 |
-
# Applying layernorm to qk
|
| 515 |
-
dtype = query.dtype
|
| 516 |
-
query = self.q_ln(query).to(dtype)
|
| 517 |
-
key = self.k_ln(key).to(dtype)
|
| 518 |
-
|
| 519 |
-
context, attn_weights, past_key_value, reshaped_idx = self.attn_fn(
|
| 520 |
-
query,
|
| 521 |
-
key,
|
| 522 |
-
value,
|
| 523 |
-
self.n_heads,
|
| 524 |
-
past_key_value=past_key_value,
|
| 525 |
-
long_range_past_key_value=long_range_past_key_value,
|
| 526 |
-
softmax_scale=self.softmax_scale,
|
| 527 |
-
attn_bias=attn_bias,
|
| 528 |
-
attn_bias_ae=attn_bias_ae,
|
| 529 |
-
key_padding_mask=key_padding_mask,
|
| 530 |
-
is_causal=is_causal,
|
| 531 |
-
dropout_p=self.attn_dropout_p,
|
| 532 |
-
training=self.training,
|
| 533 |
-
needs_weights=needs_weights,
|
| 534 |
-
topk=topk,
|
| 535 |
-
faiss_indexes=faiss_indexes,
|
| 536 |
-
n_layers=n_layers,
|
| 537 |
-
current_layer=current_layer,
|
| 538 |
-
mask_by_sim=mask_by_sim,
|
| 539 |
-
sim_threshold=sim_threshold
|
| 540 |
-
)
|
| 541 |
-
|
| 542 |
-
return self.out_proj(context), attn_weights, past_key_value, reshaped_idx
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
class MultiQueryAttention(nn.Module):
|
| 546 |
-
"""Multi-Query self attention.
|
| 547 |
-
|
| 548 |
-
Using torch or triton attention implemetation enables user to also use
|
| 549 |
-
additive bias.
|
| 550 |
-
"""
|
| 551 |
-
|
| 552 |
-
def __init__(
|
| 553 |
-
self,
|
| 554 |
-
d_model: int,
|
| 555 |
-
n_heads: int,
|
| 556 |
-
attn_impl: str = 'triton',
|
| 557 |
-
clip_qkv: Optional[float] = None,
|
| 558 |
-
qk_ln: bool = False,
|
| 559 |
-
softmax_scale: Optional[float] = None,
|
| 560 |
-
attn_pdrop: float = 0.0,
|
| 561 |
-
low_precision_layernorm: bool = False,
|
| 562 |
-
verbose: int = 0,
|
| 563 |
-
device: Optional[str] = None,
|
| 564 |
-
):
|
| 565 |
-
super().__init__()
|
| 566 |
-
|
| 567 |
-
self.attn_impl = attn_impl
|
| 568 |
-
self.clip_qkv = clip_qkv
|
| 569 |
-
self.qk_ln = qk_ln
|
| 570 |
-
|
| 571 |
-
self.d_model = d_model
|
| 572 |
-
self.n_heads = n_heads
|
| 573 |
-
self.head_dim = d_model // n_heads
|
| 574 |
-
self.softmax_scale = softmax_scale
|
| 575 |
-
if self.softmax_scale is None:
|
| 576 |
-
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
| 577 |
-
self.attn_dropout_p = attn_pdrop
|
| 578 |
-
|
| 579 |
-
# NOTE: if we ever want to make attn TensorParallel, I'm pretty sure we'll
|
| 580 |
-
# want to split Wqkv into Wq and Wkv where Wq can be TensorParallel but
|
| 581 |
-
# Wkv shouldn't be TensorParallel
|
| 582 |
-
# - vchiley
|
| 583 |
-
self.Wqkv = nn.Linear(
|
| 584 |
-
d_model,
|
| 585 |
-
d_model + 2 * self.head_dim,
|
| 586 |
-
device=device,
|
| 587 |
-
)
|
| 588 |
-
# for param init fn; enables shape based init of fused layers
|
| 589 |
-
fuse_splits = (d_model, d_model + self.head_dim)
|
| 590 |
-
self.Wqkv._fused = (0, fuse_splits) # type: ignore
|
| 591 |
-
|
| 592 |
-
if self.qk_ln:
|
| 593 |
-
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
| 594 |
-
self.q_ln = layernorm_class(d_model, device=device)
|
| 595 |
-
self.k_ln = layernorm_class(self.head_dim, device=device)
|
| 596 |
-
|
| 597 |
-
if self.attn_impl == 'flash':
|
| 598 |
-
self.attn_fn = flash_attn_fn
|
| 599 |
-
elif self.attn_impl == 'triton':
|
| 600 |
-
self.attn_fn = triton_flash_attn_fn
|
| 601 |
-
if verbose:
|
| 602 |
-
warnings.warn(
|
| 603 |
-
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
|
| 604 |
-
'it uses more memory. When training larger models this can trigger ' +\
|
| 605 |
-
'alloc retries which hurts performance. If encountered, we recommend ' +\
|
| 606 |
-
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
|
| 607 |
-
)
|
| 608 |
-
elif self.attn_impl == 'torch':
|
| 609 |
-
self.attn_fn = scaled_multihead_dot_product_attention
|
| 610 |
-
if torch.cuda.is_available() and verbose:
|
| 611 |
-
warnings.warn(
|
| 612 |
-
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
|
| 613 |
-
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
|
| 614 |
-
'we recommend using `attn_impl: triton`.'
|
| 615 |
-
)
|
| 616 |
-
else:
|
| 617 |
-
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
| 618 |
-
|
| 619 |
-
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
| 620 |
-
self.out_proj._is_residual = True # type: ignore
|
| 621 |
-
|
| 622 |
-
def forward(
|
| 623 |
-
self,
|
| 624 |
-
x,
|
| 625 |
-
past_key_value=None,
|
| 626 |
-
attn_bias=None,
|
| 627 |
-
attention_mask=None,
|
| 628 |
-
is_causal=True,
|
| 629 |
-
needs_weights=False,
|
| 630 |
-
):
|
| 631 |
-
qkv = self.Wqkv(x)
|
| 632 |
-
|
| 633 |
-
if self.clip_qkv:
|
| 634 |
-
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
| 635 |
-
|
| 636 |
-
query, key, value = qkv.split(
|
| 637 |
-
[self.d_model, self.head_dim, self.head_dim], dim=2)
|
| 638 |
-
|
| 639 |
-
key_padding_mask = attention_mask
|
| 640 |
-
|
| 641 |
-
if self.qk_ln:
|
| 642 |
-
# Applying layernorm to qk
|
| 643 |
-
dtype = query.dtype
|
| 644 |
-
query = self.q_ln(query).to(dtype)
|
| 645 |
-
key = self.k_ln(key).to(dtype)
|
| 646 |
-
|
| 647 |
-
context, attn_weights, past_key_value = self.attn_fn(
|
| 648 |
-
query,
|
| 649 |
-
key,
|
| 650 |
-
value,
|
| 651 |
-
self.n_heads,
|
| 652 |
-
past_key_value=past_key_value,
|
| 653 |
-
softmax_scale=self.softmax_scale,
|
| 654 |
-
attn_bias=attn_bias,
|
| 655 |
-
key_padding_mask=key_padding_mask,
|
| 656 |
-
is_causal=is_causal,
|
| 657 |
-
dropout_p=self.attn_dropout_p,
|
| 658 |
-
training=self.training,
|
| 659 |
-
needs_weights=needs_weights,
|
| 660 |
-
multiquery=True,
|
| 661 |
-
)
|
| 662 |
-
|
| 663 |
-
return self.out_proj(context), attn_weights, past_key_value
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal,
|
| 667 |
-
use_sequence_id):
|
| 668 |
-
if attn_impl == 'flash':
|
| 669 |
-
return None
|
| 670 |
-
elif attn_impl in ['torch', 'triton']:
|
| 671 |
-
if alibi:
|
| 672 |
-
if (prefix_lm or not causal) or use_sequence_id:
|
| 673 |
-
return (1, n_heads, seq_len, seq_len)
|
| 674 |
-
return (1, n_heads, 1, seq_len)
|
| 675 |
-
elif prefix_lm or use_sequence_id:
|
| 676 |
-
return (1, 1, seq_len, seq_len)
|
| 677 |
-
return None
|
| 678 |
-
else:
|
| 679 |
-
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
def build_attn_bias(
|
| 683 |
-
attn_impl,
|
| 684 |
-
n_heads,
|
| 685 |
-
seq_len,
|
| 686 |
-
attn_bias=None,
|
| 687 |
-
causal=False,
|
| 688 |
-
alibi=False,
|
| 689 |
-
alibi_bias_max=8,
|
| 690 |
-
for_ae=False,
|
| 691 |
-
topk=0,
|
| 692 |
-
device=None,
|
| 693 |
-
dtype=None
|
| 694 |
-
):
|
| 695 |
-
if attn_impl == 'flash':
|
| 696 |
-
return None
|
| 697 |
-
elif attn_impl in ['torch', 'triton']:
|
| 698 |
-
if alibi:
|
| 699 |
-
# in place add alibi to attn bias
|
| 700 |
-
if attn_bias is not None:
|
| 701 |
-
attn_bias = attn_bias.add(
|
| 702 |
-
build_alibi_bias(
|
| 703 |
-
n_heads,
|
| 704 |
-
seq_len,
|
| 705 |
-
full=not causal,
|
| 706 |
-
alibi_bias_max=alibi_bias_max,
|
| 707 |
-
device=device,
|
| 708 |
-
dtype=dtype,
|
| 709 |
-
for_ae=for_ae,
|
| 710 |
-
topk=topk
|
| 711 |
-
))
|
| 712 |
-
else: #for memories
|
| 713 |
-
attn_bias = build_alibi_bias(
|
| 714 |
-
n_heads,
|
| 715 |
-
seq_len,
|
| 716 |
-
full=not causal,
|
| 717 |
-
alibi_bias_max=alibi_bias_max,
|
| 718 |
-
for_ae=for_ae,
|
| 719 |
-
topk=topk)
|
| 720 |
-
return attn_bias
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
| 724 |
-
_n_heads = 2**math.ceil(math.log2(n_heads))
|
| 725 |
-
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
| 726 |
-
m = m.mul(alibi_bias_max / _n_heads)
|
| 727 |
-
slopes = (1. / torch.pow(2, m))
|
| 728 |
-
|
| 729 |
-
if _n_heads != n_heads:
|
| 730 |
-
# if n_heads is not a power of two,
|
| 731 |
-
# Huggingface and FasterTransformer calculate slopes normally,
|
| 732 |
-
# then return this strided concatenation of slopes
|
| 733 |
-
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
| 734 |
-
|
| 735 |
-
return slopes.view(1, n_heads, 1, 1)
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
def build_alibi_bias(
|
| 739 |
-
n_heads,
|
| 740 |
-
seq_len,
|
| 741 |
-
full=False,
|
| 742 |
-
alibi_bias_max=8,
|
| 743 |
-
device=None,
|
| 744 |
-
dtype=None,
|
| 745 |
-
for_ae=False,
|
| 746 |
-
topk=0
|
| 747 |
-
):
|
| 748 |
-
if not for_ae:
|
| 749 |
-
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32,
|
| 750 |
-
device=device).view(1, 1, 1, seq_len)
|
| 751 |
-
else:
|
| 752 |
-
alibi_bias = torch.tensor(-seq_len, dtype=torch.int32,
|
| 753 |
-
device=device).repeat(seq_len*topk).view(1, 1, 1, seq_len*(topk))
|
| 754 |
-
if full:
|
| 755 |
-
# generate 1 x Heads x SeqLen x SeqLen alibi bias mask
|
| 756 |
-
# otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
|
| 757 |
-
alibi_bias = alibi_bias - torch.arange(
|
| 758 |
-
1 - seq_len, 1, dtype=torch.int32, device=device).view(
|
| 759 |
-
1, 1, seq_len, 1)
|
| 760 |
-
alibi_bias = alibi_bias.abs().mul(-1)
|
| 761 |
-
|
| 762 |
-
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
| 763 |
-
alibi_bias = alibi_bias * slopes
|
| 764 |
-
return alibi_bias.to(dtype=dtype)
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
ATTN_CLASS_REGISTRY = {
|
| 768 |
-
'multihead_attention': MultiheadAttention,
|
| 769 |
-
'multiquery_attention': MultiQueryAttention,
|
| 770 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|