rrende commited on
Commit
c97c16d
·
verified ·
1 Parent(s): e9e43dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -12
README.md CHANGED
@@ -3,7 +3,19 @@ library_name: transformers
3
  license: apache-2.0
4
  ---
5
  <!-- Provide a quick summary of what the model is/does. -->
6
- Pretrained Vision Transformer Neural Quantum State on the \\(J1\\) - \\(J2\\) Heinseberg model on a \\(10\times10\\) square lattice.
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  ## How to Get Started with the Model
9
 
@@ -68,19 +80,13 @@ The expected output is:
68
  > Mean: -0.497479875901942
69
  > Mean: -0.49752966071413424
70
 
71
- The symmetrized wavefunction can be also be downloaded using:
72
 
73
  ```python
74
  wf = FlaxAutoModel.from_pretrained("nqs-models/j1j2_square_10x10", trust_remote_code=True, revision="symm_t")
75
  ```
76
 
77
- ## Training Details
78
-
79
- ### Training Procedure
80
-
81
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
82
-
83
- The model has been trained on 20 A100 GPUs for 10 hours.
84
 
85
 
86
  #### Training Hyperparameters
@@ -92,9 +98,7 @@ Number of heads: 12
92
 
93
  Total number of parameters: 434760
94
 
95
- ## Citation [optional]
96
-
97
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
98
 
99
  **BibTeX:** https://www.nature.com/articles/s42005-024-01732-4
100
 
 
3
  license: apache-2.0
4
  ---
5
  <!-- Provide a quick summary of what the model is/does. -->
6
+ Pretrained Vision Transformer Neural Quantum State on the \\(J_1\\) - \\(J_2\\) Heinseberg model on a \\(10\times10\\) square lattice.
7
+ The frustration ratio is set to \\(J_2/J_1=0.5\\).
8
+
9
+ | Revision | Variational energy | Time per sweep | Description |
10
+ |:---------------:|:------------------:|:--------------:|:---------------------------------------------------------------:|
11
+ | main | -0.497505103 | 41s | Plain ViT with translation invariance among patches |
12
+ | symm_t | -0.49760546 | 166s | ViT with translational symmetry |
13
+ | symm_trxy_ising | **-0.497676335** | | ViT with translational, point group and sz inversion symmetries |
14
+
15
+ The time per sweep is evaluated on a single A100-40GB GPU.
16
+
17
+ The model has been trained by distributing the computation over 40 A100-64GB GPUs for about four days.
18
+
19
 
20
  ## How to Get Started with the Model
21
 
 
80
  > Mean: -0.497479875901942
81
  > Mean: -0.49752966071413424
82
 
83
+ The fully translational invariant wavefunction can be also be downloaded using:
84
 
85
  ```python
86
  wf = FlaxAutoModel.from_pretrained("nqs-models/j1j2_square_10x10", trust_remote_code=True, revision="symm_t")
87
  ```
88
 
89
+ Use `revision="symm_trxy_ising"` for a wavefunction including also the point group and the sz inversion symmetries.
 
 
 
 
 
 
90
 
91
 
92
  #### Training Hyperparameters
 
98
 
99
  Total number of parameters: 434760
100
 
101
+ ## Citation
 
 
102
 
103
  **BibTeX:** https://www.nature.com/articles/s42005-024-01732-4
104