Upload model
Browse files- README.md +199 -0
- attentions.py +54 -0
- config.json +18 -0
- model.safetensors +3 -0
- transformer.py +141 -0
- vitnqs_config.py +26 -0
- vitnqs_model.py +34 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
attentions.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jax
|
2 |
+
import jax.numpy as jnp
|
3 |
+
|
4 |
+
from flax import linen as nn
|
5 |
+
import jax.numpy as jnp
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
def roll(J, shift, axis=-1):
|
10 |
+
return jnp.roll(J, shift, axis=axis)
|
11 |
+
|
12 |
+
from functools import partial
|
13 |
+
@partial(jax.vmap, in_axes=(None, 0, None), out_axes=1)
|
14 |
+
@partial(jax.vmap, in_axes=(None, None, 0), out_axes=1)
|
15 |
+
def roll2d(spins, i, j):
|
16 |
+
side = int(spins.shape[-1]**0.5)
|
17 |
+
spins = spins.reshape(spins.shape[0], side, side)
|
18 |
+
spins = jnp.roll(jnp.roll(spins, i, axis=-2), j, axis=-1)
|
19 |
+
return spins.reshape(spins.shape[0], -1)
|
20 |
+
|
21 |
+
class FMHA(nn.Module):
|
22 |
+
d_model : int
|
23 |
+
h: int
|
24 |
+
L_eff: int
|
25 |
+
transl_invariant: bool = True
|
26 |
+
two_dimensional: bool = False
|
27 |
+
|
28 |
+
def setup(self):
|
29 |
+
self.v = nn.Dense(self.d_model, kernel_init=nn.initializers.xavier_uniform(), param_dtype=jnp.float64, dtype=jnp.float64)
|
30 |
+
if self.transl_invariant:
|
31 |
+
self.J = self.param("J", nn.initializers.xavier_uniform(), (self.h, self.L_eff), jnp.float64)
|
32 |
+
if self.two_dimensional:
|
33 |
+
sq_L_eff = int(self.L_eff**0.5)
|
34 |
+
assert sq_L_eff * sq_L_eff == self.L_eff
|
35 |
+
self.J = roll2d(self.J, jnp.arange(sq_L_eff), jnp.arange(sq_L_eff))
|
36 |
+
self.J = self.J.reshape(self.h, -1, self.L_eff)
|
37 |
+
else:
|
38 |
+
self.J = jax.vmap(roll, (None, 0), out_axes=1)(self.J, jnp.arange(self.L_eff))
|
39 |
+
else:
|
40 |
+
self.J = self.param("J", nn.initializers.xavier_uniform(), (self.h, self.L_eff, self.L_eff), jnp.float64)
|
41 |
+
|
42 |
+
self.W = nn.Dense(self.d_model, kernel_init=nn.initializers.xavier_uniform(), param_dtype=jnp.float64, dtype=jnp.float64)
|
43 |
+
|
44 |
+
def __call__(self, x):
|
45 |
+
v = self.v(x)
|
46 |
+
v = rearrange(v, 'batch L_eff (h d_eff) -> batch L_eff h d_eff', h=self.h)
|
47 |
+
v = rearrange(v, 'batch L_eff h d_eff -> batch h L_eff d_eff')
|
48 |
+
x = jnp.matmul(self.J, v)
|
49 |
+
x = rearrange(x, 'batch h L_eff d_eff -> batch L_eff h d_eff')
|
50 |
+
x = rearrange(x, 'batch L_eff h d_eff -> batch L_eff (h d_eff)')
|
51 |
+
|
52 |
+
x = self.W(x)
|
53 |
+
|
54 |
+
return x
|
config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"L_eff": 25,
|
3 |
+
"architectures": [
|
4 |
+
"QSModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "vitnqs_config.ViTNQSConfig",
|
8 |
+
"FlaxAutoModel": "vitnqs_model.ViTNQSModel"
|
9 |
+
},
|
10 |
+
"b": 2,
|
11 |
+
"d_model": 72,
|
12 |
+
"heads": 12,
|
13 |
+
"model_type": "vit_nqs",
|
14 |
+
"num_layers": 8,
|
15 |
+
"transformers_version": "4.48.0",
|
16 |
+
"tras_inv": true,
|
17 |
+
"two_dim": true
|
18 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73bcef74adf67486945e05ed20e67eb48d071fbe22c8b3de8aed501b2f417df7
|
3 |
+
size 3490136
|
transformer.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jax
|
2 |
+
import jax.numpy as jnp
|
3 |
+
|
4 |
+
from flax import linen as nn
|
5 |
+
import jax.numpy as jnp
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
from .attentions import FMHA
|
10 |
+
|
11 |
+
def log_cosh(x):
|
12 |
+
sgn_x = -2 * jnp.signbit(x.real) + 1
|
13 |
+
x = x * sgn_x
|
14 |
+
return x + jnp.log1p(jnp.exp(-2.0 * x)) - jnp.log(2.0)
|
15 |
+
|
16 |
+
def extract_patches1d(x, b):
|
17 |
+
return rearrange(x, 'batch (L_eff b) -> batch L_eff b', b=b)
|
18 |
+
|
19 |
+
def extract_patches2d(x, b):
|
20 |
+
batch = x.shape[0]
|
21 |
+
L_eff = int((x.shape[1] // b**2)**0.5)
|
22 |
+
x = x.reshape(batch, L_eff, b, L_eff, b) # [L_eff, b, L_eff, b]
|
23 |
+
x = x.transpose(0, 1, 3, 2, 4) # [L_eff, L_eff, b, b]
|
24 |
+
# flatten the patches
|
25 |
+
x = x.reshape(batch, L_eff, L_eff, -1) # [L_eff, L_eff, b*b]
|
26 |
+
x = x.reshape(batch, L_eff*L_eff, -1) # [L_eff*L_eff, b*b]
|
27 |
+
return x
|
28 |
+
|
29 |
+
class Embed(nn.Module):
|
30 |
+
d_model : int
|
31 |
+
b: int
|
32 |
+
two_dimensional: bool = False
|
33 |
+
|
34 |
+
def setup(self):
|
35 |
+
if self.two_dimensional:
|
36 |
+
self.extract_patches = extract_patches2d
|
37 |
+
else:
|
38 |
+
self.extract_patches = extract_patches1d
|
39 |
+
|
40 |
+
self.embed = nn.Dense(self.d_model, kernel_init=nn.initializers.xavier_uniform(), param_dtype=jnp.float64, dtype=jnp.float64)
|
41 |
+
|
42 |
+
def __call__(self, x):
|
43 |
+
x = self.extract_patches(x, self.b)
|
44 |
+
x = self.embed(x)
|
45 |
+
|
46 |
+
return x
|
47 |
+
|
48 |
+
class EncoderBlock(nn.Module):
|
49 |
+
d_model : int
|
50 |
+
h: int
|
51 |
+
L_eff: int
|
52 |
+
transl_invariant: bool = True
|
53 |
+
two_dimensional: bool = False
|
54 |
+
|
55 |
+
def setup(self):
|
56 |
+
self.attn = FMHA(d_model=self.d_model, h=self.h, L_eff=self.L_eff, transl_invariant=self.transl_invariant, two_dimensional=self.two_dimensional)
|
57 |
+
|
58 |
+
self.layer_norm_1 = nn.LayerNorm(dtype=jnp.float64, param_dtype=jnp.float64)
|
59 |
+
self.layer_norm_2 = nn.LayerNorm(dtype=jnp.float64, param_dtype=jnp.float64)
|
60 |
+
|
61 |
+
self.ff = nn.Sequential([
|
62 |
+
nn.Dense(4*self.d_model, kernel_init=nn.initializers.xavier_uniform(), param_dtype=jnp.float64, dtype=jnp.float64),
|
63 |
+
nn.gelu,
|
64 |
+
nn.Dense(self.d_model, kernel_init=nn.initializers.xavier_uniform(), param_dtype=jnp.float64, dtype=jnp.float64),
|
65 |
+
])
|
66 |
+
|
67 |
+
|
68 |
+
def __call__(self, x):
|
69 |
+
x = x + self.attn(self.layer_norm_1(x))
|
70 |
+
|
71 |
+
x = x + self.ff( self.layer_norm_2(x) )
|
72 |
+
return x
|
73 |
+
|
74 |
+
class Encoder(nn.Module):
|
75 |
+
num_layers: int
|
76 |
+
d_model : int
|
77 |
+
h: int
|
78 |
+
L_eff: int
|
79 |
+
transl_invariant: bool = True
|
80 |
+
two_dimensional: bool = False
|
81 |
+
|
82 |
+
def setup(self):
|
83 |
+
self.layers = [EncoderBlock(d_model=self.d_model, h=self.h, L_eff=self.L_eff, transl_invariant=self.transl_invariant, two_dimensional=self.two_dimensional) for _ in range(self.num_layers)]
|
84 |
+
|
85 |
+
def __call__(self, x):
|
86 |
+
|
87 |
+
for l in self.layers:
|
88 |
+
x = l(x)
|
89 |
+
|
90 |
+
return x
|
91 |
+
|
92 |
+
class OuputHead(nn.Module):
|
93 |
+
d_model : int
|
94 |
+
|
95 |
+
def setup(self):
|
96 |
+
self.out_layer_norm = nn.LayerNorm(dtype=jnp.float64, param_dtype=jnp.float64)
|
97 |
+
|
98 |
+
self.norm2 = nn.LayerNorm(use_scale=True, use_bias=True, dtype=jnp.float64, param_dtype=jnp.float64)
|
99 |
+
self.norm3 = nn.LayerNorm(use_scale=True, use_bias=True, dtype=jnp.float64, param_dtype=jnp.float64)
|
100 |
+
|
101 |
+
self.output_layer0 = nn.Dense(self.d_model, param_dtype=jnp.float64, dtype=jnp.float64, kernel_init=nn.initializers.xavier_uniform(), bias_init=jax.nn.initializers.zeros)
|
102 |
+
self.output_layer1 = nn.Dense(self.d_model, param_dtype=jnp.float64, dtype=jnp.float64, kernel_init=nn.initializers.xavier_uniform(), bias_init=jax.nn.initializers.zeros)
|
103 |
+
|
104 |
+
def __call__(self, x):
|
105 |
+
|
106 |
+
x = self.out_layer_norm(x.sum(axis=1))
|
107 |
+
|
108 |
+
amp = self.norm2(self.output_layer0(x))
|
109 |
+
sign = self.norm3(self.output_layer1(x))
|
110 |
+
|
111 |
+
z = amp + 1j*sign
|
112 |
+
|
113 |
+
return jnp.sum(log_cosh(z), axis=-1)
|
114 |
+
|
115 |
+
class ViT(nn.Module):
|
116 |
+
num_layers: int
|
117 |
+
d_model : int
|
118 |
+
heads: int
|
119 |
+
L_eff: int
|
120 |
+
b: int
|
121 |
+
transl_invariant: bool = True
|
122 |
+
two_dimensional: bool = False
|
123 |
+
|
124 |
+
def setup(self):
|
125 |
+
self.patches_and_embed = Embed(self.d_model, self.b, two_dimensional=self.two_dimensional)
|
126 |
+
|
127 |
+
self.encoder = Encoder(num_layers=self.num_layers, d_model=self.d_model, h=self.heads, L_eff=self.L_eff, transl_invariant=self.transl_invariant, two_dimensional=self.two_dimensional)
|
128 |
+
|
129 |
+
self.output = OuputHead(self.d_model)
|
130 |
+
|
131 |
+
|
132 |
+
def __call__(self, spins):
|
133 |
+
x = jnp.atleast_2d(spins)
|
134 |
+
|
135 |
+
x = self.patches_and_embed(x)
|
136 |
+
|
137 |
+
x = self.encoder(x)
|
138 |
+
|
139 |
+
z = self.output(x)
|
140 |
+
|
141 |
+
return z
|
vitnqs_config.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class ViTNQSConfig(PretrainedConfig):
|
6 |
+
model_type = "vit_nqs"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
L_eff=25,
|
11 |
+
num_layers = 8,
|
12 |
+
d_model = 72,
|
13 |
+
heads = 12,
|
14 |
+
b = 2,
|
15 |
+
tras_inv = True,
|
16 |
+
two_dim = True,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
self.L_eff = L_eff
|
20 |
+
self.num_layers = num_layers
|
21 |
+
self.d_model = d_model
|
22 |
+
self.heads = heads
|
23 |
+
self.b = b
|
24 |
+
self.tras_inv = tras_inv
|
25 |
+
self.two_dim = two_dim
|
26 |
+
super().__init__(**kwargs)
|
vitnqs_model.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import FlaxPreTrainedModel
|
2 |
+
import jax.numpy as jnp
|
3 |
+
from .transformer import ViT
|
4 |
+
from .vitnqs_config import ViTNQSConfig
|
5 |
+
|
6 |
+
|
7 |
+
class ViTNQSModel(FlaxPreTrainedModel):
|
8 |
+
config_class = ViTNQSConfig
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
config: ViTNQSConfig,
|
13 |
+
input_shape = jnp.zeros((1, 100)),
|
14 |
+
seed: int = 0,
|
15 |
+
dtype: jnp.dtype = jnp.float64,
|
16 |
+
_do_init: bool = True,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
self.model = ViT(L_eff=config.L_eff,
|
20 |
+
num_layers=config.num_layers,
|
21 |
+
d_model=config.d_model,
|
22 |
+
heads=config.heads,
|
23 |
+
b=config.b,
|
24 |
+
transl_invariant=config.tras_inv,
|
25 |
+
two_dimensional=config.two_dim,
|
26 |
+
)
|
27 |
+
|
28 |
+
super().__init__(config, ViT, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
29 |
+
|
30 |
+
def __call__(self, params, spins):
|
31 |
+
return self.model.apply(params, spins)
|
32 |
+
|
33 |
+
def init_weights(self, rng, input_shape):
|
34 |
+
return self.model.init(rng, input_shape)
|