File size: 4,916 Bytes
1331269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbed0f
1331269
 
 
 
 
e89f307
1331269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
language: vi
tags:
- intent-classification
- smart-home
- vietnamese
- phobert
license: mit
datasets:
- custom-vn-slu-augmented
metrics:
- accuracy
- f1
model-index:
- name: PhoBERT Intent Classifier for Vietnamese Smart Home
  results:
  - task:
      type: text-classification
      name: Intent Classification
    dataset:
      name: VN-SLU Augmented Dataset
      type: custom
    metrics:
    - type: accuracy
      value: 98.3
      name: Accuracy
    - type: f1
      value: 97.72
      name: F1 Score (Weighted)
    - type: f1
      value: 71.90
      name: F1 Score (Macro)
widget:
- text: "bật đèn phòng khách"
- text: "tắt quạt phòng ngủ lúc 10 giờ tối"
- text: "kiểm tra tình trạng điều hòa"
- text: "tăng độ sáng đèn bàn"
- text: "mở cửa chính"
---

# PhoBERT Fine-tuned for Vietnamese Smart Home Intent Classification

This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) specifically trained for intent classification in Vietnamese smart home commands.

## Model Description

- **Base Model**: vinai/phobert-base
- **Task**: Intent Classification for Smart Home Commands
- **Language**: Vietnamese
- **Number of Intent Classes**: 13

## Intended Uses & Limitations

### Intended Uses
- Classifying user intents in Vietnamese smart home voice commands
- Integration with voice assistants for home automation
- Research in Vietnamese NLP for IoT applications

### Limitations
- Optimized specifically for smart home domain
- May not generalize well to other domains
- Trained on Vietnamese language only

## Intent Classes

The model can classify the following 13 intents:
1. `bật thiết bị` (turn on device)
2. `tắt thiết bị` (turn off device)
3. `mở thiết bị` (open device)
4. `đóng thiết bị` (close device)
5. `tăng độ sáng của thiết bị` (increase device brightness)
6. `giảm độ sáng của thiết bị` (decrease device brightness)
7. `kiểm tra tình trạng thiết bị` (check device status)
8. `điều chỉnh nhiệt độ` (adjust temperature)
9. `hẹn giờ` (set timer)
10. `kích hoạt cảnh` (activate scene)
11. `tắt tất cả thiết bị` (turn off all devices)
12. `mở khóa` (unlock)
13. `khóa` (lock)

## How to Use

### Using Transformers Library

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import pickle

# Load model and tokenizer
model_name = "ntgiaky/phobert-intent-classifier-smart-home"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Load label encoder
with open('intent_encoder.pkl', 'rb') as f:
    label_encoder = pickle.load(f)

# Predict intent
def predict_intent(text):
    # Tokenize
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
    
    # Predict
    with torch.no_grad():
        outputs = model(**inputs)
        predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
        predicted_class = torch.argmax(predictions, dim=-1)
    
    # Decode label
    intent = label_encoder.inverse_transform(predicted_class.cpu().numpy())[0]
    confidence = predictions[0][predicted_class].item()
    
    return intent, confidence

# Example usage
text = "bật đèn phòng khách"
intent, confidence = predict_intent(text)
print(f"Intent: {intent}, Confidence: {confidence:.2f}")
```

### Using Pipeline

```python
from transformers import pipeline

# Load pipeline
classifier = pipeline(
    "text-classification",
    model="ntgiaky/phobert-intent-classifier-smart-home",
    device=0  # Use -1 for CPU
)

# Predict
result = classifier("tắt quạt phòng ngủ")
print(result)
```

## Integration Example

```python
# For Raspberry Pi deployment
import onnxruntime as ort
import numpy as np

# Convert to ONNX first (one-time)
from transformers import AutoModel
model = AutoModel.from_pretrained("ntgiaky/phobert-intent-classifier-smart-home")
# ... ONNX conversion code ...

# Then use ONNX Runtime for inference
session = ort.InferenceSession("model.onnx")
# ... inference code ...
```

## Citation

If you use this model, please cite:

```bibtex
@misc{phobert-smart-home-2025,
  author = {Trần Quang Huy and Nguyễn Trần Gia Kỳ},
  title = {PhoBERT Fine-tuned for Vietnamese Smart Home Intent Classification},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face Model Hub},
  howpublished = {\url{https://huggingface.co/ntgiaky/intent-classifier-smart-home}}
}
```

## Authors

- **Trần Quang Huy** 
- **Nguyễn Trần Gia Kỳ** 

## License

This model is released under the MIT License.

## Contact

For questions or issues, please open an issue on the [model repository](https://huggingface.co/ntgiaky/phobert-intent-classifier-smart-home) or contact the authors through the university.