ntucool commited on
Commit
ce12a8f
·
verified ·
1 Parent(s): 2988806

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,388 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:164
8
+ - loss:MultipleNegativesRankingLoss
9
+ - loss:CosineSimilarityLoss
10
+ base_model: BAAI/bge-small-zh-v1.5
11
+ widget:
12
+ - source_sentence: qa_234
13
+ sentences:
14
+ - 1客戶主軸馬達編碼器異常主軸馬達送修拿備品安裝聯軸器廠商安裝並校正動平衡我司協助裝回
15
+ - 故障狀況 追加皮帶式油水分離機 處理狀況 備料為客戶追加
16
+ - 追加皮帶式油水分離機
17
+ - source_sentence: qa_97
18
+ sentences:
19
+ - 故障狀況 1C軸轉盤整修 處理狀況 1XYZC軸伺服濾波及增益調整 2主軸測試棒精度確認發現主軸偏擺過大4條半主軸需檢修 3角尺精度調整及確認XYXZYZ符合精度要求1條內
20
+ 4確認C軸盤面偏擺符合精度要求1條內 5確認工作台平面精度需再處理將工作台墊片拆回座精度上的調整X軸光學尺關閉
21
+ - 1C軸轉盤整修
22
+ - 1客戶機台移廠房協助定位校正水平精度
23
+ - source_sentence: qa_202
24
+ sentences:
25
+ - 1客戶反應油冷機跳EX1038 OIL COOLER ALARM EX1014 OIL COOLER OVERLOAD
26
+ - 故障狀況 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷 處理狀況 1修改PLC並測試所有sensor異常時需刀臂停止測試給用戶確認ok
27
+ - 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷
28
+ - source_sentence: qa_60
29
+ sentences:
30
+ - 1客戶反應吊桿太矮要求更換 2切削液馬達有異音
31
+ - 上滑軌有磨損以及塊的C釦及內部零件已掉落
32
+ - 故障狀況 上滑軌有磨損以及塊的C釦及內部零件已掉落 處理狀況 備料為客戶更換
33
+ - source_sentence: qa_217
34
+ sentences:
35
+ - 1客戶反應跳主軸異警協助西門子檢修
36
+ - 油壓箱table spin clamp油管壓接不良有漏油現象
37
+ - 故障狀況 油壓箱table spin clamp油管壓接不良有漏油現象 處理狀況 備油管為客戶更換
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ ---
41
+
42
+ # SentenceTransformer based on BAAI/bge-small-zh-v1.5
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) on the train dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) <!-- at revision 7999e1d3359715c523056ef9478215996d62a620 -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 512 dimensions
53
+ - **Similarity Function:** Cosine Similarity
54
+ - **Training Dataset:**
55
+ - train
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ (2): Normalize()
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("sentence_transformers_model_id")
91
+ # Run inference
92
+ sentences = [
93
+ 'qa_217',
94
+ '油壓箱table spin clamp油管壓接不良有漏油現象',
95
+ '故障狀況 油壓箱table spin clamp油管壓接不良有漏油現象 處理狀況 備油管為客戶更換',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 512]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Dataset
146
+
147
+ #### train
148
+
149
+ * Dataset: train
150
+ * Size: 164 training samples
151
+ * Columns: <code>question</code>, <code>chunk</code>, and <code>label</code>
152
+ * Approximate statistics based on the first 164 samples:
153
+ | | question | chunk | label |
154
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
155
+ | type | string | string | float |
156
+ | details | <ul><li>min: 6 tokens</li><li>mean: 23.19 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 79.21 tokens</li><li>max: 176 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
157
+ * Samples:
158
+ | question | chunk | label |
159
+ |:--------------------------|:----------------------------------------------------------------------------------------|:-----------------|
160
+ | <code>1中噴箱體壓力表異常</code> | <code>故障狀況 1中噴箱體壓力表異常 處理狀況 1依照廠商檢查方案過濾灌乾淨未阻塞濾心乾淨壓力表洩氣未改善 2更換壓力表安裝測試中噴壓力已改善客戶確認OK</code> | <code>1.0</code> |
161
+ | <code>1用戶反應機台有漏水現象</code> | <code>故障狀況 1用戶反應機台有漏水現象 處理狀況 1查修後危機台左後立柱位置漏出拆開Y後伸縮護罩鈑金重新填上矽利康測試確認已無漏水</code> | <code>1.0</code> |
162
+ | <code>風槍的管路破裂會漏風</code> | <code>故障狀況 風槍的管路破裂會漏風 處理狀況 備風槍管為客戶更換</code> | <code>1.0</code> |
163
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
164
+ ```json
165
+ {
166
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
167
+ }
168
+ ```
169
+
170
+ ### Evaluation Dataset
171
+
172
+ #### train
173
+
174
+ * Dataset: train
175
+ * Size: 40 evaluation samples
176
+ * Columns: <code>question</code>, <code>chunk</code>, and <code>label</code>
177
+ * Approximate statistics based on the first 40 samples:
178
+ | | question | chunk | label |
179
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
180
+ | type | string | string | float |
181
+ | details | <ul><li>min: 7 tokens</li><li>mean: 22.3 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 69.75 tokens</li><li>max: 144 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
182
+ * Samples:
183
+ | question | chunk | label |
184
+ |:------------------------------------------------|:---------------------------------------------------------------------------------------------|:-----------------|
185
+ | <code>冷氣機結冰</code> | <code>故障狀況 冷氣機結冰 處理狀況 經威士頓評估後 同意保固提供一片冷氣控制板給客戶更換</code> | <code>1.0</code> |
186
+ | <code>1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷</code> | <code>故障狀況 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷 處理狀況 1修改PLC並測試所有sensor異常時需刀臂停止測試給用戶確認ok</code> | <code>1.0</code> |
187
+ | <code>更換鏈條以及鏈條軸承</code> | <code>故障狀況 更換鏈條以及鏈條軸承 處理狀況 備料為客戶更換</code> | <code>1.0</code> |
188
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
189
+ ```json
190
+ {
191
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
192
+ }
193
+ ```
194
+
195
+ ### Training Hyperparameters
196
+ #### Non-Default Hyperparameters
197
+
198
+ - `eval_strategy`: steps
199
+ - `per_device_train_batch_size`: 16
200
+ - `per_device_eval_batch_size`: 16
201
+ - `num_train_epochs`: 1
202
+ - `max_steps`: 500
203
+ - `warmup_ratio`: 0.1
204
+ - `fp16`: True
205
+
206
+ #### All Hyperparameters
207
+ <details><summary>Click to expand</summary>
208
+
209
+ - `overwrite_output_dir`: False
210
+ - `do_predict`: False
211
+ - `eval_strategy`: steps
212
+ - `prediction_loss_only`: True
213
+ - `per_device_train_batch_size`: 16
214
+ - `per_device_eval_batch_size`: 16
215
+ - `per_gpu_train_batch_size`: None
216
+ - `per_gpu_eval_batch_size`: None
217
+ - `gradient_accumulation_steps`: 1
218
+ - `eval_accumulation_steps`: None
219
+ - `torch_empty_cache_steps`: None
220
+ - `learning_rate`: 5e-05
221
+ - `weight_decay`: 0.0
222
+ - `adam_beta1`: 0.9
223
+ - `adam_beta2`: 0.999
224
+ - `adam_epsilon`: 1e-08
225
+ - `max_grad_norm`: 1.0
226
+ - `num_train_epochs`: 1
227
+ - `max_steps`: 500
228
+ - `lr_scheduler_type`: linear
229
+ - `lr_scheduler_kwargs`: {}
230
+ - `warmup_ratio`: 0.1
231
+ - `warmup_steps`: 0
232
+ - `log_level`: passive
233
+ - `log_level_replica`: warning
234
+ - `log_on_each_node`: True
235
+ - `logging_nan_inf_filter`: True
236
+ - `save_safetensors`: True
237
+ - `save_on_each_node`: False
238
+ - `save_only_model`: False
239
+ - `restore_callback_states_from_checkpoint`: False
240
+ - `no_cuda`: False
241
+ - `use_cpu`: False
242
+ - `use_mps_device`: False
243
+ - `seed`: 42
244
+ - `data_seed`: None
245
+ - `jit_mode_eval`: False
246
+ - `use_ipex`: False
247
+ - `bf16`: False
248
+ - `fp16`: True
249
+ - `fp16_opt_level`: O1
250
+ - `half_precision_backend`: auto
251
+ - `bf16_full_eval`: False
252
+ - `fp16_full_eval`: False
253
+ - `tf32`: None
254
+ - `local_rank`: 0
255
+ - `ddp_backend`: None
256
+ - `tpu_num_cores`: None
257
+ - `tpu_metrics_debug`: False
258
+ - `debug`: []
259
+ - `dataloader_drop_last`: False
260
+ - `dataloader_num_workers`: 0
261
+ - `dataloader_prefetch_factor`: None
262
+ - `past_index`: -1
263
+ - `disable_tqdm`: False
264
+ - `remove_unused_columns`: True
265
+ - `label_names`: None
266
+ - `load_best_model_at_end`: False
267
+ - `ignore_data_skip`: False
268
+ - `fsdp`: []
269
+ - `fsdp_min_num_params`: 0
270
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
271
+ - `tp_size`: 0
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: None
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `include_for_metrics`: []
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: proportional
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss | train loss |
328
+ |:-------:|:----:|:-------------:|:----------:|
329
+ | 9.0909 | 100 | 2.3557 | 2.8228 |
330
+ | 18.1818 | 200 | 0.3241 | 2.9318 |
331
+ | 27.2727 | 300 | 0.0786 | 3.0996 |
332
+ | 36.3636 | 400 | 0.0408 | 3.1550 |
333
+ | 45.4545 | 500 | 0.0328 | 3.1758 |
334
+ | 9.0909 | 100 | 0.2424 | 0.0369 |
335
+ | 18.1818 | 200 | 0.0199 | 0.0374 |
336
+ | 27.2727 | 300 | 0.0231 | 0.0395 |
337
+ | 36.3636 | 400 | 0.0178 | 0.0387 |
338
+ | 45.4545 | 500 | 0.0157 | 0.0385 |
339
+ | 9.0909 | 100 | 0.0172 | 0.0000 |
340
+ | 18.1818 | 200 | 0.002 | 0.0000 |
341
+ | 27.2727 | 300 | 0.0016 | 0.0000 |
342
+ | 36.3636 | 400 | 0.0014 | 0.0000 |
343
+ | 45.4545 | 500 | 0.0013 | 0.0000 |
344
+
345
+
346
+ ### Framework Versions
347
+ - Python: 3.11.12
348
+ - Sentence Transformers: 4.1.0
349
+ - Transformers: 4.51.3
350
+ - PyTorch: 2.6.0+cu124
351
+ - Accelerate: 1.6.0
352
+ - Datasets: 3.5.1
353
+ - Tokenizers: 0.21.1
354
+
355
+ ## Citation
356
+
357
+ ### BibTeX
358
+
359
+ #### Sentence Transformers
360
+ ```bibtex
361
+ @inproceedings{reimers-2019-sentence-bert,
362
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
363
+ author = "Reimers, Nils and Gurevych, Iryna",
364
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
365
+ month = "11",
366
+ year = "2019",
367
+ publisher = "Association for Computational Linguistics",
368
+ url = "https://arxiv.org/abs/1908.10084",
369
+ }
370
+ ```
371
+
372
+ <!--
373
+ ## Glossary
374
+
375
+ *Clearly define terms in order to be accessible across audiences.*
376
+ -->
377
+
378
+ <!--
379
+ ## Model Card Authors
380
+
381
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
382
+ -->
383
+
384
+ <!--
385
+ ## Model Card Contact
386
+
387
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
388
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 512,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 2048,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 8,
23
+ "num_hidden_layers": 4,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.51.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 21128
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13aab83f84858b4937acf601d695ed73c8c17ded40c5b689c5d9043270e52c77
3
+ size 95823472
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff