Cosmos
Safetensors
NeMo
cosmos-embed1
nvidia
custom_code
File size: 19,226 Bytes
413fcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "136b43b6",
   "metadata": {},
   "source": [
    "## Setup\n",
    "\n",
    "We need `transformers`, `torchvision` and `einops` as basic dependencies for the model. \n",
    "For this example, we also use `wget` for fetching data remotely, `decord` for decoding video frames, and `mediapy` for saving videos."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4363e953",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: transformers in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (4.51.3)\n",
      "Requirement already satisfied: torchvision in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (0.22.0)\n",
      "Requirement already satisfied: einops in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (0.8.1)\n",
      "Requirement already satisfied: decord in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (0.6.0)\n",
      "Requirement already satisfied: mediapy in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (1.2.4)\n",
      "Requirement already satisfied: filelock in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (3.18.0)\n",
      "Requirement already satisfied: huggingface-hub<1.0,>=0.30.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (0.30.2)\n",
      "Requirement already satisfied: numpy>=1.17 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (2.2.5)\n",
      "Requirement already satisfied: packaging>=20.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (25.0)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (6.0.2)\n",
      "Requirement already satisfied: regex!=2019.12.17 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (2024.11.6)\n",
      "Requirement already satisfied: requests in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (2.32.3)\n",
      "Requirement already satisfied: tokenizers<0.22,>=0.21 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (0.21.1)\n",
      "Requirement already satisfied: safetensors>=0.4.3 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (0.5.3)\n",
      "Requirement already satisfied: tqdm>=4.27 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from transformers) (4.67.1)\n",
      "Requirement already satisfied: torch==2.7.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torchvision) (2.7.0)\n",
      "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torchvision) (11.2.1)\n",
      "Requirement already satisfied: typing-extensions>=4.10.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (4.13.2)\n",
      "Requirement already satisfied: sympy>=1.13.3 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (1.14.0)\n",
      "Requirement already satisfied: networkx in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (3.4.2)\n",
      "Requirement already satisfied: jinja2 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (3.1.6)\n",
      "Requirement already satisfied: fsspec in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (2025.3.2)\n",
      "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.6.77 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.6.77)\n",
      "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.6.77 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.6.77)\n",
      "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.6.80 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.6.80)\n",
      "Requirement already satisfied: nvidia-cudnn-cu12==9.5.1.17 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (9.5.1.17)\n",
      "Requirement already satisfied: nvidia-cublas-cu12==12.6.4.1 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.6.4.1)\n",
      "Requirement already satisfied: nvidia-cufft-cu12==11.3.0.4 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (11.3.0.4)\n",
      "Requirement already satisfied: nvidia-curand-cu12==10.3.7.77 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (10.3.7.77)\n",
      "Requirement already satisfied: nvidia-cusolver-cu12==11.7.1.2 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (11.7.1.2)\n",
      "Requirement already satisfied: nvidia-cusparse-cu12==12.5.4.2 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.5.4.2)\n",
      "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.3 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (0.6.3)\n",
      "Requirement already satisfied: nvidia-nccl-cu12==2.26.2 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (2.26.2)\n",
      "Requirement already satisfied: nvidia-nvtx-cu12==12.6.77 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.6.77)\n",
      "Requirement already satisfied: nvidia-nvjitlink-cu12==12.6.85 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (12.6.85)\n",
      "Requirement already satisfied: nvidia-cufile-cu12==1.11.1.6 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (1.11.1.6)\n",
      "Requirement already satisfied: triton==3.3.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from torch==2.7.0->torchvision) (3.3.0)\n",
      "Requirement already satisfied: setuptools>=40.8.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from triton==3.3.0->torch==2.7.0->torchvision) (75.8.0)\n",
      "Requirement already satisfied: ipython in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from mediapy) (8.36.0)\n",
      "Requirement already satisfied: matplotlib in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from mediapy) (3.10.3)\n",
      "Requirement already satisfied: decorator in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (5.2.1)\n",
      "Requirement already satisfied: exceptiongroup in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (1.2.2)\n",
      "Requirement already satisfied: jedi>=0.16 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (0.19.2)\n",
      "Requirement already satisfied: matplotlib-inline in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (0.1.7)\n",
      "Requirement already satisfied: pexpect>4.3 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (4.9.0)\n",
      "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (3.0.51)\n",
      "Requirement already satisfied: pygments>=2.4.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (2.19.1)\n",
      "Requirement already satisfied: stack_data in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (0.6.3)\n",
      "Requirement already satisfied: traitlets>=5.13.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from ipython->mediapy) (5.14.3)\n",
      "Requirement already satisfied: contourpy>=1.0.1 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from matplotlib->mediapy) (1.3.2)\n",
      "Requirement already satisfied: cycler>=0.10 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from matplotlib->mediapy) (0.12.1)\n",
      "Requirement already satisfied: fonttools>=4.22.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from matplotlib->mediapy) (4.58.0)\n",
      "Requirement already satisfied: kiwisolver>=1.3.1 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from matplotlib->mediapy) (1.4.8)\n",
      "Requirement already satisfied: pyparsing>=2.3.1 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from matplotlib->mediapy) (3.2.3)\n",
      "Requirement already satisfied: python-dateutil>=2.7 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from matplotlib->mediapy) (2.9.0.post0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from requests->transformers) (3.4.1)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from requests->transformers) (3.10)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from requests->transformers) (2.4.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from requests->transformers) (2025.4.26)\n",
      "Requirement already satisfied: parso<0.9.0,>=0.8.4 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from jedi>=0.16->ipython->mediapy) (0.8.4)\n",
      "Requirement already satisfied: ptyprocess>=0.5 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from pexpect>4.3->ipython->mediapy) (0.7.0)\n",
      "Requirement already satisfied: wcwidth in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython->mediapy) (0.2.13)\n",
      "Requirement already satisfied: six>=1.5 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib->mediapy) (1.17.0)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from sympy>=1.13.3->torch==2.7.0->torchvision) (1.3.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from jinja2->torch==2.7.0->torchvision) (3.0.2)\n",
      "Requirement already satisfied: executing>=1.2.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from stack_data->ipython->mediapy) (2.2.0)\n",
      "Requirement already satisfied: asttokens>=2.1.0 in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from stack_data->ipython->mediapy) (3.0.0)\n",
      "Requirement already satisfied: pure_eval in /data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages (from stack_data->ipython->mediapy) (0.2.3)\n"
     ]
    }
   ],
   "source": [
    "!pip install transformers torchvision einops decord mediapy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "54c2ac81-3389-4c8d-bc08-4834eb88fa73",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/data/miniconda3/envs/cosmos-embed1/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import decord\n",
    "import numpy as np\n",
    "import torch\n",
    "from transformers import AutoConfig, AutoModel, AutoProcessor\n",
    "from IPython.display import Video\n",
    "import subprocess\n",
    "import io"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa84e4fa",
   "metadata": {},
   "source": [
    "## Instantiate model\n",
    "\n",
    "We use `AutoModel` and `AutoProcessor` to download the weights and inference code for Cosmos-Embed1. The model has been trained with bfloat16, so we should cast if the GPU supports it. The preprocessor tokenizes text and resizes/rescales batched video frames. We also override the default resolution to a non-square example."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "7438262f-f1dc-4f33-a941-a40d4e43cda6",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 15.64it/s]\n"
     ]
    }
   ],
   "source": [
    "path = \"../\"\n",
    "\n",
    "config = AutoConfig.from_pretrained(path, trust_remote_code=True)\n",
    "\n",
    "model = AutoModel.from_pretrained(path, trust_remote_code=True, config=config).to(\"cuda\", dtype=torch.bfloat16)\n",
    "model.eval()\n",
    "preprocess = AutoProcessor.from_pretrained(path, trust_remote_code=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bb9065d6",
   "metadata": {},
   "source": [
    "## Fetch data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6d2287cf-badb-4608-9b4c-701c08e8217f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "--2025-06-03 16:11:10--  https://upload.wikimedia.org/wikipedia/commons/3/3d/Branko_Paukovic%2C_javelin_throw.webm\n",
      "Resolving upload.wikimedia.org (upload.wikimedia.org)... 198.35.26.112, 2620:0:863:ed1a::2:b\n",
      "Connecting to upload.wikimedia.org (upload.wikimedia.org)|198.35.26.112|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 159119 (155K) [video/webm]\n",
      "Saving to: β€˜/tmp/output.mp4’\n",
      "\n",
      "     0K .......... .......... .......... .......... .......... 32% 1.36M 0s\n",
      "    50K .......... .......... .......... .......... .......... 64% 14.6M 0s\n",
      "   100K .......... .......... .......... .......... .......... 96% 1.31M 0s\n",
      "   150K .....                                                 100% 10.0T=0.08s\n",
      "\n",
      "2025-06-03 16:11:10 (1.98 MB/s) - β€˜/tmp/output.mp4’ saved [159119/159119]\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<video src=\"https://upload.wikimedia.org/wikipedia/commons/3/3d/Branko_Paukovic%2C_javelin_throw.webm\" controls  >\n",
       "      Your browser does not support the <code>video</code> element.\n",
       "    </video>"
      ],
      "text/plain": [
       "<IPython.core.display.Video object>"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "video_url = \"https://upload.wikimedia.org/wikipedia/commons/3/3d/Branko_Paukovic%2C_javelin_throw.webm\"\n",
    "subprocess.check_call([\"wget\", \"-O\", \"/tmp/output.mp4\", video_url])\n",
    "video_bytes = open(\"/tmp/output.mp4\", \"rb\").read()\n",
    "assert video_bytes\n",
    "Video(video_url)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "13ce12db",
   "metadata": {},
   "source": [
    "We sample 8 frames from the single video and create a tensor of shape `batch_size x num_frames x channel_dim x height x width`. The model has been trained on 8 frames sampled at 1-2FPS. For this example, we linearly sample frames from the entire ~2s clip."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b57ed50d-f11b-4100-9a7d-45edc27babf9",
   "metadata": {},
   "outputs": [],
   "source": [
    "with io.BytesIO(video_bytes) as fp:\n",
    "    reader = decord.VideoReader(fp)\n",
    "    frame_ids = np.linspace(0, len(reader)-1, 8, dtype=int).tolist()\n",
    "    frames = reader.get_batch(frame_ids).asnumpy()\n",
    "batch = np.transpose(np.expand_dims(frames, 0), (0, 1, 4, 2, 3))  # BTCHW"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8627495d",
   "metadata": {},
   "source": [
    "## Inference"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4fccb879",
   "metadata": {},
   "source": [
    "We run inference on the video batch by preprocessing it, moving it to the GPU and calling the `get_video_embeddings` method.\n",
    "\n",
    "We run inference on text captions by preprocessing them into tokens and attention masks, moving to the GPU and calling the `get_text_embeddings` method. \n",
    "\n",
    "We can then calculate the similarity between the text and video embeddings using a dot-product, and rank the captions by highest similarity to the video. The model correctly ranks the most likely caption as being `a man wearing red spandex throwing a javelin`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "376a6e0a-1932-4309-aa6f-0be92f2e5846",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a man wearing red spandex throwing a javelin\n"
     ]
    }
   ],
   "source": [
    "video_inputs = preprocess(videos=batch).to(\"cuda\", dtype=torch.bfloat16)\n",
    "with torch.no_grad():\n",
    "    video_out = model.get_video_embeddings(**video_inputs)\n",
    "\n",
    "captions = [\n",
    "    \"a person riding a motorcycle in the night\",\n",
    "    \"a car overtaking a white truck\",\n",
    "    \"a video of a knight fighting with a sword\",\n",
    "    \"a man wearing red spandex throwing a javelin\",\n",
    "    \"a young man javelin throwing during the evening\", # distractor\n",
    "    \"a man throwing a javelin with both hands\", # distractor\n",
    "]\n",
    "text_inputs = preprocess(text=captions).to(\"cuda\", dtype=torch.bfloat16)\n",
    "with torch.no_grad():\n",
    "    text_out = model.get_text_embeddings(**text_inputs)\n",
    "\n",
    "probs = (torch.softmax(model.logit_scale.exp() * video_out.visual_proj @ text_out.text_proj.T, dim=-1))[0]\n",
    "print(captions[probs.argmax()])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "cosmos-embed1",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}