Cosmos
Safetensors
NeMo
cosmos-embed1
nvidia
custom_code
File size: 10,408 Bytes
413fcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Cosmos-Embed1 text+video embedder."""

import math
from copy import deepcopy

import torch
from einops import rearrange
from torch import nn
from torch.nn import functional as F
from transformers import AutoModel, PreTrainedModel

from .configuration_embed1 import CosmosEmbed1Config
from .modeling_outputs import TextEmbedderOutput, TextVideoEmbedderOutput, VideoEmbedderOutput
from .modeling_qformer import BertLMHeadModel, load_qformer
from .modeling_utils import EncodingFactory, rank0_first
from .modeling_vit import EvaViTG


class CosmosEmbed1(PreTrainedModel):
    config_class = CosmosEmbed1Config

    def __init__(self, config: CosmosEmbed1Config) -> None:
        """Cosmos-Embed1 video embedder constructor.

        Args:
            config (CosmosEmbed1Config): Model configuration.
        """
        super().__init__(config)

        self.embed_dim = config.embed_dim
        self.num_query_tokens = config.num_query_tokens
        self.num_video_frames = config.num_video_frames
        self.temporal_encoding_type = config.temporal_encoding_type
        self.resolution = config.resolution
        self.vocab_size = config.vocab_size
        self.transformer_engine = config.transformer_engine
        self.use_fp8 = config.use_fp8

        # visual encoder initialization
        self.register_buffer(
            "normalization_mean",
            torch.tensor([0.485, 0.456, 0.406]).view(1, 1, 3, 1, 1),
            persistent=False,
        )
        self.register_buffer(
            "normalization_std",
            torch.tensor([0.229, 0.224, 0.225]).view(1, 1, 3, 1, 1),
            persistent=False,
        )
        self.visual_encoder = EvaViTG(
            img_size=self.resolution,
            transformer_engine=self.transformer_engine,
            use_fp8=self.use_fp8,
        )
        self.ln_vision = nn.LayerNorm(self.visual_encoder.embed_dim)

        # qformer initialization
        self.qformer, self.query_tokens = self._init_qformer(
            num_query_tokens=self.num_query_tokens,
            encoder_width=self.visual_encoder.embed_dim,
            vocab_size=self.vocab_size,
        )
        # self.qformer.
        state_dict = self.qformer.state_dict()
        for name, param in self.qformer.named_parameters():
            if "_query" in name:
                key_orig = name.replace("_query", "")
                param.data.copy_(state_dict[key_orig])

        # temporal encoding
        self.temporal_encoding = EncodingFactory(
            self.temporal_encoding_type,
            embed_dim=self.visual_encoder.embed_dim,
            max_len=self.num_video_frames,
        )

        # output projections
        self.vision_proj = nn.Linear(self.qformer.config.hidden_size, self.embed_dim)
        self.text_proj = nn.Linear(self.qformer.config.hidden_size, self.embed_dim)
        self.itm_proj = nn.Linear(self.qformer.config.hidden_size, 2)
        # initialize logit scale/bias like SigLIP (as per Table 4 in https://arxiv.org/pdf/2303.15343)
        self.logit_scale = nn.Parameter(torch.tensor(math.log(10.0)))
        self.logit_bias = nn.Parameter(torch.tensor(-10.0))

    @property
    def hidden_dim(self) -> int:
        return self.visual_encoder.embed_dim

    @torch.jit.ignore
    def no_weight_decay(self) -> set:
        ret = {"logit_scale", "logit_bias"}
        return ret

    def forward(
        self,
        videos: torch.FloatTensor,
        input_ids: torch.LongTensor,
        attention_mask: torch.FloatTensor,
    ) -> TextVideoEmbedderOutput:
        """Forward function for `ComosEmbed1`.

        Args:
            videos (`torch.Tensor` of shape `(batch_size, num_frames, RGB, height, width)`):
                batched videos with fixed number of RGB frames.
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary.
                Indices can be obtained by using [`AutoTokenizer`, `CosmosEmbed1Tokenizer`].
            attention_mask: (`torch.Tensor` of shape `(batch_size, sequence_length)`):
                Mask to avoid performing attention on padding token indices.
                Mask values select in `[0, 1]`.
                - 1 for tokens that are **not masked**.
                - 0 for tokens that are **masked**.
        """
        video_output = self.get_video_embeddings(videos)
        text_output = self.get_text_embeddings(input_ids, attention_mask)
        return TextVideoEmbedderOutput(**video_output, **text_output)

    def get_video_embeddings(self, videos: torch.Tensor) -> VideoEmbedderOutput:
        videos = (videos - self.normalization_mean) / self.normalization_std
        batch_size, num_frames, _, H, W = videos.shape
        frame_batch = rearrange(videos, "b t c h w -> (b t) c h w")

        # process video frames through ViT
        visual_embs = self.visual_encoder(frame_batch)
        visual_embs = self.ln_vision(visual_embs)
        visual_embs = rearrange(
            visual_embs,
            "(b t) k d -> b t k d",
            b=batch_size,
            t=num_frames,
            k=visual_embs.size(1),
            d=visual_embs.size(2),
        )

        # add temporal encoding
        visual_embs = self.temporal_encoding(visual_embs)

        # Q-Former cross-attention
        encoder_hidden_states = rearrange(visual_embs, "b t k d -> b (t k) d")
        encoder_attention_mask = torch.ones(encoder_hidden_states.size()[:-1], dtype=torch.long).to(videos.device)
        query_tokens = self.query_tokens.expand(encoder_hidden_states.size(0), -1, -1)
        visual_query_output = self.qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
            return_dict=True,
        )

        visual_cls_tokens = visual_query_output.last_hidden_state.mean(dim=1, keepdim=False)
        visual_proj = self.vision_proj(visual_cls_tokens)
        visual_proj = F.normalize(visual_proj, dim=-1)

        # reshape visual embs to (B,T,H,W,D), to confirm with expected output.
        # separate out the frame-level cls tokens if necessary.
        frame_cls_tokens, visual_embs = visual_embs[:, :, 0:1], visual_embs[:, :, 1:]
        h = H // self.visual_encoder.patch_size
        w = W // self.visual_encoder.patch_size
        visual_embs = rearrange(visual_embs, "b t (h w) d -> b t h w d", h=h, w=w)

        return VideoEmbedderOutput(
            visual_proj=visual_proj,
            visual_embs=visual_embs,
            visual_query_output=visual_query_output,
            visual_cls_tokens=visual_cls_tokens,
            frame_cls_tokens=frame_cls_tokens,
        )

    def get_text_embeddings(
        self,
        input_ids: torch.LongTensor,
        attention_mask: torch.FloatTensor,
    ) -> TextEmbedderOutput:
        text_query_output = self.qformer.bert(
            input_ids=input_ids,
            attention_mask=attention_mask.to(dtype=self.query_tokens.dtype),
            return_dict=True,
        )
        text_proj = text_query_output.last_hidden_state[:, 0, :]
        text_proj = self.text_proj(text_proj)
        text_proj = F.normalize(text_proj, dim=-1)

        return TextEmbedderOutput(
            text_proj=text_proj,
            text_embs=text_query_output.last_hidden_state,
            text_query_output=text_query_output,
        )

    @classmethod
    @rank0_first
    def _init_qformer(
        cls: "CosmosEmbed1",
        num_query_tokens: int,
        encoder_width: int,
        vocab_size: int,
        hidden_size: int = 768,
    ) -> tuple[BertLMHeadModel, nn.Parameter]:
        """Convenience function for initializing QFormer module."""
        qformer = load_qformer(
            num_query_tokens=num_query_tokens,
            encoder_width=encoder_width,
            hidden_size=hidden_size,
            vocab_size=vocab_size,
        )
        query_tokens = nn.Parameter(torch.zeros(1, num_query_tokens, hidden_size))
        query_tokens.data.normal_(mean=0.0, std=0.02)
        return qformer, query_tokens

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
        # Get config from kwargs or load from pretrained path
        config = kwargs.get("config", None)
        if config is None:
            config = CosmosEmbed1Config.from_pretrained(pretrained_model_name_or_path)

        if config.transformer_engine:
            config_no_te = deepcopy(config)
            config_no_te.transformer_engine = False
            config_no_te.use_fp8 = False  # Also disable FP8 for the base model

            # Remove 'config' from kwargs to avoid conflict, we'll pass config_no_te
            kwargs_no_te = deepcopy(kwargs)
            kwargs_no_te["config"] = config_no_te

            # Load standard (non-TE) model & weights
            base_model = super().from_pretrained(pretrained_model_name_or_path, **kwargs_no_te)
            base_state_dict = base_model.state_dict()

            # Now build the TE version of the model
            model_with_te = cls(config=config)

            # Load weights from non-TE model
            missing, unexpected = model_with_te.load_state_dict(base_state_dict, strict=False)

            # Optional debug log
            if missing:
                print(f"[TransformerEngine] Missing keys: {missing}")
            if unexpected:
                print(f"[TransformerEngine] Unexpected keys: {unexpected}")

            return model_with_te
        else:
            return super().from_pretrained(pretrained_model_name_or_path, **kwargs)


AutoModel.register(CosmosEmbed1Config, CosmosEmbed1)