Cosmos
Safetensors
NeMo
cosmos-embed1
nvidia
custom_code
File size: 26,868 Bytes
413fcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright (c) 2023, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

"""
EVA-CLIP backbone used in BLIP2.

Code adapted from:
https://github.com/salesforce/LAVIS/blob/main/lavis/models/eva_vit.py
"""


import math
from functools import partial
from logging import getLogger
from typing import Any, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

logger = getLogger(__file__)

TRANSFORMER_ENGINE_AVAILABLE = False
try:
    import transformer_engine.pytorch as te
    from transformer_engine.common.recipe import DelayedScaling, Format

    TRANSFORMER_ENGINE_AVAILABLE = True
    logger.info("Transformer Engine is available, can set `transformer_engine=True` in config " "for faster inference.")
except ImportError:
    pass


def drop_path(x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    From https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: float) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer=nn.GELU,
        drop: float = 0.0,
        transformer_engine: bool = False,
    ) -> None:
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        fn = te.Linear if transformer_engine else nn.Linear
        self.fc1 = fn(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = fn(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        window_size=None,
        attn_head_dim=None,
        **kwargs,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)

        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros(self.num_relative_distance, num_heads)
            )  # 2*Wh-1 * 2*Ww-1, nH
            # cls to token & token 2 cls & cls to cls

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(window_size[0])
            coords_w = torch.arange(window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * window_size[1] - 1
            relative_position_index = torch.zeros(
                size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
            )
            relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer("relative_position_index", relative_position_index)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, rel_pos_bias=None):
        B, N, C = x.shape
        qkv = self.qkv(x)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)

        if self.relative_position_bias_table is not None:
            relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
            )  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if rel_pos_bias is not None:
            attn = attn + rel_pos_bias

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class TransformerEngineAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_scale: Optional[float] = None,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        window_size: Optional[int] = None,
        attn_head_dim: Optional[int] = None,
        checkpoint_attention: bool = False,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.checkpoint_attention = checkpoint_attention
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim**-0.5

        # QKV projection
        self.qkv = te.Linear(dim, all_head_dim * 3, bias=qkv_bias)

        if window_size:
            raise NotImplementedError("`window_size` not implemented for TE!")

        self.te_attn = te.DotProductAttention(
            num_attention_heads=num_heads,
            kv_channels=head_dim,
            attention_dropout=attn_drop,
            qkv_format="bshd",
            softmax_scale=self.scale,
            attn_mask_type="no_mask",
        )

        # output projection + dropout
        self.proj = te.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor, rel_pos_bias: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        x: [B, N, C]
        rel_pos_bias (optional): tensor of shape [num_heads, N, N]
        """
        B, N, _ = x.shape
        qkv = self.qkv(x)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # BNHC format

        if rel_pos_bias is not None:
            raise NotImplementedError("`rel_pos_bias` not implemented for TE!")

        # run TE's fused attention
        y = self.te_attn(q, k, v, checkpoint_core_attention=self.checkpoint_attention)

        # final proj + dropout
        return self.proj_drop(self.proj(y))


class Block(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        init_values=None,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        window_size=None,
        attn_head_dim=None,
        transformer_engine: bool = False,
        checkpoint_attention: bool = False,
    ):
        super().__init__()
        self.transformer_engine = transformer_engine
        self.window_size = window_size
        self.checkpoint_attention = checkpoint_attention

        if checkpoint_attention and not transformer_engine:
            raise ValueError("`checkpoint_attention` needs `transformer_engine`!")

        self.norm1 = norm_layer(dim)
        attn_fn = TransformerEngineAttention if transformer_engine else Attention
        self.attn = attn_fn(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            window_size=window_size,
            attn_head_dim=attn_head_dim,
            checkpoint_attention=checkpoint_attention,
        )

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
            transformer_engine=transformer_engine,
        )

        if init_values is not None and init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, rel_pos_bias=None):
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(
        self,
        img_size: Union[int, Tuple[int, int]] = 224,
        patch_size: Union[int, Tuple[int, int]] = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
    ):
        super().__init__()
        img_size = (img_size, img_size) if isinstance(img_size, int) else img_size
        patch_size = (patch_size, patch_size) if isinstance(patch_size, int) else patch_size
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x, **kwargs):
        B, C, H, W = x.shape
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class RelativePositionBias(nn.Module):
    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, num_heads)
        )  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = torch.zeros(
            size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
        )
        relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index", relative_position_index)

    def forward(self):
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
        )  # Wh*Ww,Wh*Ww,nH
        return relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class VisionTransformer(nn.Module):
    """Vision Transformer with support for patch or hybrid CNN input stage"""

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        num_classes=1000,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        norm_layer=nn.LayerNorm,
        init_values=None,
        use_abs_pos_emb=True,
        use_rel_pos_bias=False,
        use_shared_rel_pos_bias=False,
        use_mean_pooling=True,
        init_scale=0.001,
        checkpoint_activations: bool = False,
        checkpoint_attention: bool = False,
        transformer_engine: bool = False,
        use_fp8: bool = False,
    ):
        super().__init__()
        self.image_size = img_size
        self.patch_size = patch_size
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.transformer_engine = transformer_engine
        self.use_fp8 = use_fp8
        self.fp8_recipe = None

        if use_fp8 and not transformer_engine:
            raise ValueError("`transformer_engine` must be enabled for `use_fp8`.")
        if use_fp8:
            # FP8 Recipe: Hybrid E4M3 forward, E5M2 backward
            self.fp8_recipe = DelayedScaling(fp8_format=Format.HYBRID, amax_history_len=16, amax_compute_algo="max")

        self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        if use_abs_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        else:
            self.pos_embed = None
        self.pos_drop = nn.Dropout(p=drop_rate)

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
        else:
            self.rel_pos_bias = None
        self.checkpoint_activations = checkpoint_activations
        self.checkpoint_attention = checkpoint_attention

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.use_rel_pos_bias = use_rel_pos_bias
        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    init_values=init_values,
                    window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
                    transformer_engine=transformer_engine,
                    checkpoint_attention=self.checkpoint_attention,
                )
                for i in range(depth)
            ]
        )

        if self.pos_embed is not None:
            nn.init.trunc_normal_(self.pos_embed, std=0.02)
        nn.init.trunc_normal_(self.cls_token, std=0.02)

        self.apply(self._init_weights)
        self.fix_init_weight()

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=""):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        if self.transformer_engine and self.use_fp8:
            with te.fp8_autocast(enabled=True, fp8_recipe=self.fp8_recipe):
                return self._forward_uncast(x)
        return self._forward_uncast(x)

    def _forward_uncast(self, x):
        x = self.patch_embed(x)
        batch_size, seq_len, _ = x.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        for blk in self.blocks:
            if self.checkpoint_activations:
                x = checkpoint.checkpoint(blk, x, rel_pos_bias)
            else:
                x = blk(x, rel_pos_bias)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        return x

    def get_intermediate_layers(self, x):
        x = self.patch_embed(x)
        batch_size, seq_len, _ = x.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        features = []
        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        for blk in self.blocks:
            x = blk(x, rel_pos_bias)
            features.append(x)

        return features

    def get_num_layer(self, var_name=""):
        if var_name in ("cls_token", "mask_token", "pos_embed"):
            return 0
        elif var_name.startswith("patch_embed"):
            return 0
        elif var_name.startswith("rel_pos_bias"):
            return len(self.blocks) - 1
        elif var_name.startswith("blocks"):
            layer_id = int(var_name.split(".")[1])
            return layer_id + 1
        else:
            return len(self.blocks)


def interpolate_pos_embed(
    pos_embed_key: str,
    num_patches: int,
    patch_embed_shape: torch.Size,
    checkpoint_model: dict[str, torch.Tensor],
    target_h: int = None,
    target_w: int = None,
) -> None:
    if pos_embed_key in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model[pos_embed_key].float()
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_extra_tokens = patch_embed_shape - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)

        # If target dimensions are provided, use them; otherwise assume square
        if target_h is not None and target_w is not None:
            new_h, new_w = target_h, target_w
        else:
            # height (== width) for the new position embedding (square assumption)
            new_size = int(num_patches**0.5)
            new_h, new_w = new_size, new_size

        # class_token and dist_token are kept unchanged
        if orig_size * orig_size != new_h * new_w:
            logger.info("Positional interpolation from %dx%d to %dx%d" % (orig_size, orig_size, new_h, new_w))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_h, new_w), mode="bicubic", align_corners=False
            )
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_embed_key] = new_pos_embed


class PositionalEmbeddingHook:
    def __init__(self, pos_embed_name, num_patches, patch_embed_shape, target_h=None, target_w=None):
        self.pos_embed_name = pos_embed_name
        self.num_patches = num_patches
        self.patch_embed_shape = patch_embed_shape
        self.target_h = target_h
        self.target_w = target_w

    def __call__(self, state_dict, prefix, *args, **kwargs) -> None:
        logger.info("Calling `PositionalEmbeddingHook`")
        pos_embed_key = f"{prefix}{self.pos_embed_name}"
        interpolate_pos_embed(
            pos_embed_key, self.num_patches, self.patch_embed_shape, state_dict, self.target_h, self.target_w
        )


class EvaViTG(VisionTransformer):
    def __init__(
        self,
        img_size: Union[int, Tuple[int, int]] = 224,
        drop_path_rate: float = 0.4,
        pretrained: bool = False,
        checkpoint_path: Optional[str] = None,
        checkpoint_activations: bool = False,
        checkpoint_attention: bool = False,
        transformer_engine: bool = False,
        use_fp8: bool = False,
        **kwargs: Any,
    ) -> None:
        if not TRANSFORMER_ENGINE_AVAILABLE and transformer_engine:
            raise ValueError(
                "TransformerEngine is not available, "
                "please install transformer-engine or set `transformer_engine=False` in config."
            )
        if use_fp8 and not transformer_engine:
            raise ValueError("`transformer_engine` must be enabled for `use_fp8`.")
        super().__init__(
            img_size=img_size,
            patch_size=14,
            use_mean_pooling=False,
            embed_dim=1408,
            depth=39,
            num_heads=1408 // 88,
            mlp_ratio=4.3637,
            qkv_bias=True,
            drop_path_rate=drop_path_rate,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            checkpoint_activations=checkpoint_activations,
            checkpoint_attention=checkpoint_attention,
            transformer_engine=transformer_engine,
            use_fp8=use_fp8,
        )
        self.checkpoint_path = checkpoint_path

        # compatibility with pre-trained checkpoints
        self.register_pre_hooks()

        # load pre-trained checkpoints
        if pretrained:
            self.load_checkpoint()

    def load_checkpoint(self) -> None:
        logger.info(f"Loading checkpoint from {self.checkpoint_path}")
        state_dict = torch.load(self.checkpoint_path, map_location="cpu")
        incompatible_keys = self.load_state_dict(state_dict, strict=False)
        logger.info(f"Incompatible keys: {incompatible_keys}")
        logger.info(f"Loaded visual encoder {type(self)} with state dict from {self.checkpoint_path}")

    def register_pre_hooks(self) -> None:
        """Register positional embedding interpolation when loading pre-trained checkpoints using different resolution."""
        # Calculate target patch dimensions for non-square support
        patch_h = self.patch_embed.patch_shape[0]
        patch_w = self.patch_embed.patch_shape[1]

        embed_hook = PositionalEmbeddingHook(
            pos_embed_name="pos_embed",
            num_patches=self.patch_embed.num_patches,
            patch_embed_shape=self.pos_embed.shape[-2],
            target_h=patch_h,
            target_w=patch_w,
        )
        self._register_load_state_dict_pre_hook(embed_hook)

    def _initialize_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)