File size: 4,974 Bytes
ecf8cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Cosmos-Embed1
"""
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torchvision
from transformers import AutoProcessor, BatchFeature
from transformers.processing_utils import ProcessorMixin
from transformers.utils import TensorType
from .configuration_embed1 import CosmosEmbed1Config
class CosmosEmbed1Processor(ProcessorMixin):
r"""
Constructs a processor which wraps a BertTokenizer tokenizer and a fast video resize function.
Args:
tokenizer ([`BertTokenizerFast`], *optional*):
The tokenizer is a required input for text processing.
config ([`CosmosEmbed1Config`], *optional*):
Needed for processing options.
"""
attributes = ["tokenizer"]
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
config_class = CosmosEmbed1Config
chat_template = None
def __init__(
self,
tokenizer=None,
resolution: Union[int, Tuple[int, int]] = 336,
num_video_frames: int = 8,
max_txt_len: int = 128,
**kwargs,
) -> None:
super().__init__(tokenizer, **kwargs)
self.resolution = resolution
self.num_video_frames = num_video_frames
self.max_txt_len = max_txt_len
def __call__(
self,
text: Optional[Union[str, List[str]]] = None,
videos: Optional[Union[np.ndarray, torch.Tensor]] = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
resolution: Union[int, Tuple[int, int]] = None,
num_video_frames: int = None,
max_txt_len: int = None,
**kwargs,
) -> BatchFeature:
inputs = {}
if text is not None:
max_txt_len = max_txt_len if max_txt_len is not None else self.max_txt_len
tokenized = self.tokenizer(
text, return_tensors="pt", padding="max_length", truncation=True, max_length=max_txt_len, **kwargs
)
inputs["input_ids"] = tokenized.input_ids
inputs["attention_mask"] = tokenized.attention_mask.float()
if videos is not None:
if isinstance(videos, np.ndarray):
videos = torch.from_numpy(videos)
if not isinstance(videos, torch.Tensor) or videos.ndim != 5:
raise ValueError("Processor expects a numpy or torch tensor of shape BTCHW from [0-255].")
resolution = resolution if resolution is not None else self.resolution
if isinstance(resolution, int):
resolution = (resolution, resolution)
_, t, c, h, w = videos.shape
if c != 3:
raise ValueError(f"Expected tensor of shape BTCHW with RGB channels, got channel size {c}.")
num_video_frames = num_video_frames if num_video_frames is not None else self.num_video_frames
if t != num_video_frames:
raise ValueError(f"Expected tensor of shape BTCHW with {num_video_frames} frames, got {t}.")
if h != resolution[0] or w != resolution[1]:
videos = resize_video(videos, resolution)
if videos.dtype == torch.uint8:
videos = videos.float()
inputs["videos"] = videos / 255.0
if not inputs:
raise ValueError("Must pass either `text` or `videos` argument to __call__ function.")
return BatchFeature(inputs, tensor_type=return_tensors)
def resize_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
"""Resize a video tensor (B, T, C, H, W) to a new height/width.
Args:
video (torch.Tensor): (B, T, C, H, W) uint8 or float32.
size (tuple): target (H', W') size.
Returns:
torch.Tensor: resized video of shape (B, T, C, H', W')
"""
h, w = size
B, T, C, H, W = video.shape
video = video.view(B * T, C, H, W)
resize = torchvision.transforms.Resize(
(h, w),
antialias=True,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
)
video = resize(video)
new_H, new_W = video.shape[-2:]
video = video.view(B, T, C, new_H, new_W)
return video
AutoProcessor.register(CosmosEmbed1Config, CosmosEmbed1Processor)
__all__ = ["CosmosEmbed1Processor"]
|