English
ashawkey commited on
Commit
ceac3dc
·
verified ·
1 Parent(s): cc55078

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -16
README.md CHANGED
@@ -9,46 +9,80 @@ language:
9
  # Model Card for PartPacker
10
 
11
  ## Description
12
- PartPacker takes a single input image and generates a 3D shape with an arbitrary number of complete parts.
13
  We introduce a dual volume packing strategy that organizes all parts into two complementary volumes, allowing for the creation of complete and interleaved parts that assemble into the final object.
14
  This model is ready for non-commercial use.
15
 
16
  ## License/Terms of Use
17
  [NVIDIA Non-Commercial License](https://huggingface.co/nvidia/PartPacker/blob/main/LICENSE)
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ## Model Architecture
20
- **Architecture Type:** Transformer
 
 
21
 
22
  ## Input
23
  **Input Type(s):** Image
24
- **Input Format(s):** RGB Image
25
- **Input Parameters:** 2D Image
26
- **Other Properties Related to Input:** Condition for the model.
27
 
28
  ## Output
29
- **Output Type(s):** Mesh
30
- **Output Format:** GLB
31
- **Output Parameters:** 3D Mesh
32
- **Other Properties Related to Output:** Generated 3D shape with parts.
33
 
34
- ## Supported Hardware Microarchitecture Compatibility
 
 
 
 
 
 
 
35
  * NVIDIA Ampere
36
  * NVIDIA Hopper
37
 
38
- ## Supported Operating System(s)
39
  * Linux
40
 
41
  ## Model Version(s)
42
  v1.0
43
 
44
- ## Training Dataset
45
- [Objaverse-XL](https://objaverse.allenai.org/)
46
- **Properties:** We use about 250k mesh data, which is a subset from the Objaverse-XL with part-level annotations.
47
- **Dataset License(s):** The use of the dataset as a whole is licensed under the ODC-By v1.0 license.
 
 
 
 
 
 
 
48
 
49
 
50
  ## Inference
51
- Pytorch
 
 
52
 
53
 
54
  ## Ethical Considerations
 
9
  # Model Card for PartPacker
10
 
11
  ## Description
12
+ PartPacker is a three-dimensional (3D) generation model that is able to generate part-level 3D objects from single-view images.
13
  We introduce a dual volume packing strategy that organizes all parts into two complementary volumes, allowing for the creation of complete and interleaved parts that assemble into the final object.
14
  This model is ready for non-commercial use.
15
 
16
  ## License/Terms of Use
17
  [NVIDIA Non-Commercial License](https://huggingface.co/nvidia/PartPacker/blob/main/LICENSE)
18
 
19
+
20
+ ## Deployment Geography
21
+ Global
22
+
23
+ ## Use Case
24
+ PartPacker takes a single input image and generates a 3D shape with an arbitrary number of complete parts. Each part can be separated and edited independently to facilitate downstream tasks such as editing and animation.
25
+ It's intended to be used by researchers and academics to develop new 3D generation methods.
26
+
27
+ ## Release Date
28
+ * Github: 06/04/2025 via [https://github.com/NVlabs/PartPacker](https://github.com/NVlabs/PartPacker)
29
+ * Huggingface: 06/04/2025 via [https://huggingface.co/NVlabs/PartPacker](https://huggingface.co/NVlabs/PartPacker)
30
+
31
+ ## Reference(s)
32
+ [Code](https://github.com/NVlabs/PartPacker)
33
+ [Paper](https://arxiv.org/abs/TODO)
34
+
35
  ## Model Architecture
36
+ **Architecture Type:** Transformer
37
+ **Network Architecture:** Diffusion Transformer (DiT)
38
+
39
 
40
  ## Input
41
  **Input Type(s):** Image
42
+ **Input Format(s):** Red, Green, Blue (RGB)
43
+ **Input Parameters:** Two-dimensional (2D) image
44
+ **Other Properties Related to Input:** Resolution will be resized to $518 \times 518$.
45
 
46
  ## Output
47
+ **Output Type(s):** Triangle Mesh
48
+ **Output Format:** GL Transmission Format Binary (GLB)
49
+ **Output Parameters:** Three-dimensional (3D) triangle mesh
50
+ **Other Properties Related to Output:** Extracted at a resolution up to $512^3$; without texture.
51
 
52
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
53
+
54
+ ## Software Integration
55
+
56
+ ### Runtime Engine(s)
57
+ * PyTorch
58
+
59
+ ### Supported Hardware Microarchitecture Compatibility
60
  * NVIDIA Ampere
61
  * NVIDIA Hopper
62
 
63
+ ### Preferred Operating System(s)
64
  * Linux
65
 
66
  ## Model Version(s)
67
  v1.0
68
 
69
+ ## Training, Testing, and Evaluation Datasets
70
+
71
+ We perform training, testing, and evaluation on the Objaverse-XL dataset.
72
+ For the VAE model, we use the first 253K meshes for training and the rest 1K meshes for validation.
73
+ For the Flow model, we use all 254K meshes for training.
74
+ ### Objaverse-XL
75
+
76
+ **Link**: https://objaverse.allenai.org/
77
+ **Data Collection Method**: Hybrid: Automatic, Synthetic
78
+ **Labeling Method by dataset**: N/A (no labels)
79
+ **Properties:** We use about 254k mesh data, which is a subset from the Objaverse-XL filtered by the number of parts.
80
 
81
 
82
  ## Inference
83
+
84
+ **Acceleration Engine**: PyTorch
85
+ **Test Hardware**: NVIDIA A100 (1 GPU configuration)
86
 
87
 
88
  ## Ethical Considerations