File size: 18,937 Bytes
8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 8a8eebe 8e5d8c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import os
import cv2
import time
import torch
import imageio
import tifffile
import numpy as np
import slidingwindow
import rasterio as rio
import geopandas as gpd
from shapely.geometry import Polygon
from rasterio import mask as riomask
from torch.utils.data import DataLoader
from SemanticModel.visualization import generate_color_mapping
from SemanticModel.image_preprocessing import get_validation_augmentations
from SemanticModel.data_loader import InferenceDataset, StreamingDataset
from SemanticModel.utilities import calc_image_size, convert_coordinates
class PredictionPipeline:
def __init__(self, model_config, device=None):
self.config = model_config
self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.classes = ['background'] + model_config.classes if model_config.background_flag else model_config.classes
self.colors = generate_color_mapping(len(self.classes))
self.model = model_config.model.to(self.device)
self.model.eval()
def _preprocess_image(self, image_path, target_size=None):
"""Preprocesses single image for prediction."""
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
target_size = target_size or max(height, width)
test_height, test_width = calc_image_size(image, target_size)
augmentation = get_validation_augmentations(test_width, test_height)
image = augmentation(image=image)['image']
image = self.config.preprocessing(image=image)['image']
return image, (height, width)
def predict_single_image(self, image_path, target_size=None, output_dir=None,
format='integer', save_output=True):
"""Generates prediction for a single image."""
image, original_dims = self._preprocess_image(image_path, target_size)
x_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
with torch.no_grad():
prediction = self.model.predict(x_tensor)
if self.config.n_classes > 1:
prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0)
else:
prediction = prediction.squeeze().cpu().numpy().round()
# Resize to original dimensions if needed
if prediction.shape[:2] != original_dims:
prediction = cv2.resize(prediction, original_dims[::-1],
interpolation=cv2.INTER_NEAREST)
prediction = self._format_prediction(prediction, format)
if save_output:
self._save_prediction(prediction, image_path, output_dir, format)
return prediction
def predict_directory(self, input_dir, target_size=None, output_dir=None,
fixed_size=True, format='integer'):
"""Generates predictions for all images in directory."""
output_dir = output_dir or os.path.join(input_dir, 'predictions')
os.makedirs(output_dir, exist_ok=True)
dataset = InferenceDataset(
input_dir,
classes=self.classes,
augmentation=get_validation_augmentations(
target_size, target_size, fixed_size=fixed_size
) if target_size else None,
preprocessing=self.config.preprocessing
)
total_images = len(dataset)
start_time = time.time()
for idx in range(total_images):
if (idx + 1) % 10 == 0 or idx == total_images - 1:
elapsed = time.time() - start_time
print(f'\rProcessed {idx+1}/{total_images} images in {elapsed:.1f}s',
end='')
image, height, width = dataset[idx]
filename = dataset.filenames[idx]
x_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
with torch.no_grad():
prediction = self.model.predict(x_tensor)
if self.config.n_classes > 1:
prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0)
else:
prediction = prediction.squeeze().cpu().numpy().round()
if prediction.shape != (height, width):
prediction = cv2.resize(prediction, (width, height),
interpolation=cv2.INTER_NEAREST)
prediction = self._format_prediction(prediction, format)
self._save_prediction(prediction, filename, output_dir, format)
print(f'\nPredictions saved to: {output_dir}')
return output_dir
def predict_raster(
self,
raster_path,
tile_size=1024,
overlap=0.175,
boundary_path=None,
output_path=None,
format='integer'
):
"""
Processes large raster images using a tiling approach. For each tile:
1) Optionally checks a boundary mask (if provided) to skip tiles outside an ROI.
2) Applies augmentations/preprocessing, then runs the model prediction.
3) Resizes back to the tile's original size if necessary (e.g., after aug).
4) Merges the tile predictions into a final 'pred_raster' (with confidence blending).
Args:
raster_path (str): Path to the large raster image (GeoTIFF).
tile_size (int): Dimensions of each tile (default 1024).
overlap (float): Overlap fraction between tiles (default 0.175).
boundary_path (str): Path to shapefile/geojson for boundary region (optional).
output_path (str): Path to save prediction (optional).
format (str): 'integer' for integer mask, 'color' for RGB, etc.
Returns:
pred_raster (np.ndarray): 2D or 3D numpy array with the final merged prediction.
profile (dict): Raster profile/metadata for georeferencing or saving.
"""
print("Loading raster...")
with rio.open(raster_path) as src:
# Read [Bands, Height, Width] -> Move axis => [Height, Width, Bands]
raster = src.read()
raster = np.moveaxis(raster, 0, 2)
raster = raster[:, :, :3] # keep only first 3 bands if >3
profile = src.profile
transform = src.transform
boundary_geom = None
if boundary_path:
boundary = gpd.read_file(boundary_path)
boundary = boundary.to_crs(profile['crs'])
boundary_geom = boundary.iloc[0].geometry
print("Generating tiles...")
tiles = slidingwindow.generate(
raster,
slidingwindow.DimOrder.HeightWidthChannel,
tile_size,
overlap
)
# Prepare the output arrays:
# pred_raster => final integer (or color) predictions
# confidence => track confidence per pixel to do max merging
pred_raster = np.zeros_like(raster[:, :, 0], dtype='uint8') # shape: (H, W)
confidence = np.zeros_like(pred_raster, dtype=np.float32) # shape: (H, W)
# Get your augmentations/preprocessing
aug = get_validation_augmentations(tile_size, tile_size, fixed_size=False)
# -------------------------------
# Iterate over each tile
# -------------------------------
for idx, tile in enumerate(tiles):
if (idx + 1) % 10 == 0 or idx == len(tiles) - 1:
print(f"\rProcessed {idx + 1}/{len(tiles)} tiles", end="")
# tile.indices() = (slice(row_start, row_end), slice(col_start, col_end))
bounds = tile.indices()
# Extract tile from the big raster
tile_image = raster[bounds[0], bounds[1]]
# tile_image.shape => (tile_height, tile_width, channels)
# print(f"\n[DEBUG] Tile #{idx}: tile_image shape before aug = {tile_image.shape}")
# 1) Check for zero-size tile BEFORE augmentations
if tile_image.shape[0] == 0 or tile_image.shape[1] == 0:
# print("[DEBUG] Skipping tile => zero dimension BEFORE aug")
continue
# 2) If boundary is given, skip tile if it doesn't intersect
if boundary_geom is not None:
corners = [
convert_coordinates(transform, bounds[1].start, bounds[0].start),
convert_coordinates(transform, bounds[1].stop, bounds[0].start),
convert_coordinates(transform, bounds[1].stop, bounds[0].stop),
convert_coordinates(transform, bounds[1].start, bounds[0].stop)
]
poly = Polygon(corners)
if not poly.intersects(boundary_geom):
# print("[DEBUG] Skipping tile => outside boundary")
continue
# 3) Apply augmentations
processed = aug(image=tile_image)['image']
# print(f"[DEBUG] processed shape after aug = {processed.shape}")
# Check for zero-size tile AFTER augmentations
if processed.shape[0] == 0 or processed.shape[1] == 0:
# print("[DEBUG] Skipping tile => zero dimension AFTER aug")
continue
# 4) Preprocessing for the model
processed = self.config.preprocessing(image=processed)['image']
x_tensor = torch.from_numpy(processed).to(self.device).unsqueeze(0)
# right after model inference and before merging into pred_raster ...
with torch.no_grad():
# Model output: shape ~ (1, n_classes, H_aug, W_aug)
prediction = self.model.predict(x_tensor)
# Remove batch dimension: (n_classes, H_aug, W_aug) for multi-class
prediction = prediction.squeeze().cpu().numpy()
# -----------------------------------------------------------------
# 1) Convert raw logits -> label map (tile_pred) and confidence map
# -----------------------------------------------------------------
# If you have 'n_classes=4', `prediction.shape` might be (4, H_aug, W_aug).
# We must ARGMAX across the class dimension to get a 2D label map.
# In predict_raster() function, replace this part:
if prediction.ndim == 3 and prediction.shape[0] == self.config.n_classes:
# Multi-class case
tile_pred = np.argmax(prediction, axis=0).astype(np.uint8)
tile_conf = np.max(prediction, axis=0).astype(np.float32)
else:
# Binary case - take first channel if multiple channels
if prediction.ndim == 3:
prediction = prediction[0] # Take first channel
tile_conf = np.abs(prediction - 0.5).astype(np.float32)
tile_pred = np.round(prediction).astype(np.uint8)
orig_hw = tile_image.shape[:2] # (tile_height, tile_width)
if tile_pred.shape != orig_hw:
# print(f"[DEBUG] Resizing from {tile_pred.shape} to {orig_hw} ...")
# Cast to float32 for cv2.resize
tile_pred_float = tile_pred.astype(np.float32)
tile_conf_float = tile_conf.astype(np.float32)
# cv2 expects (width, height)
cv2_size = (orig_hw[1], orig_hw[0])
if cv2_size[0] == 0 or cv2_size[1] == 0:
# print("[DEBUG] Skipping tile => zero dimension for cv2_size!")
continue
# NEAREST for label map, LINEAR for confidence
tile_pred_resized = cv2.resize(
tile_pred_float, cv2_size, interpolation=cv2.INTER_NEAREST
)
tile_conf_resized = cv2.resize(
tile_conf_float, cv2_size, interpolation=cv2.INTER_LINEAR
)
# Convert back to appropriate dtypes
tile_pred = np.round(tile_pred_resized).astype(np.uint8)
tile_conf = tile_conf_resized.astype(np.float32)
# -----------------------------------------------------------------
# 3) Merge tile_pred into the final pred_raster / confidence arrays
# -----------------------------------------------------------------
existing_conf = confidence[bounds[0], bounds[1]]
existing_pred = pred_raster[bounds[0], bounds[1]]
mask = tile_conf > existing_conf
existing_pred[mask] = tile_pred[mask]
existing_conf[mask] = tile_conf[mask]
pred_raster[bounds[0], bounds[1]] = existing_pred
confidence[bounds[0], bounds[1]] = existing_conf
print("\n Finished all tiles")
# 9) Convert pred_raster to final format (color or integer)
pred_raster = self._format_prediction(pred_raster, format)
# 10) (Optional) Save if output_path or boundary_path provided
if output_path or boundary_path:
self._save_raster_prediction(
pred_raster,
raster_path,
output_path,
profile,
boundary_geom if boundary_path else None
)
return pred_raster, profile
def _format_prediction(self, prediction, format):
"""Formats prediction according to specified output type."""
if format == 'integer':
return prediction.astype('uint8')
elif format == 'color':
return self._apply_color_mapping(prediction)
else:
raise ValueError(f"Unsupported format: {format}")
def _save_prediction(self, prediction, source_path, output_dir, format):
"""Saves prediction to disk."""
filename = os.path.splitext(os.path.basename(source_path))[0]
output_path = os.path.join(output_dir, f"{filename}_pred.png")
cv2.imwrite(output_path, prediction)
def _save_raster_prediction(self, prediction, source_path, output_path,
profile, boundary=None):
"""Saves raster prediction with geospatial information."""
output_path = output_path or source_path.replace(
os.path.splitext(source_path)[1], '_predicted.tif'
)
profile.update(
dtype='uint8',
count=3 if prediction.ndim == 3 else 1
)
with rio.open(output_path, 'w', **profile) as dst:
if prediction.ndim == 3:
for i in range(3):
dst.write(prediction[:,:,i], i+1)
else:
dst.write(prediction, 1)
if boundary:
with rio.open(output_path) as src:
cropped, transform = riomask.mask(src, [boundary], crop=True)
profile.update(
height=cropped.shape[1],
width=cropped.shape[2],
transform=transform
)
os.remove(output_path)
with rio.open(output_path, 'w', **profile) as dst:
dst.write(cropped)
print(f'\nPrediction saved to: {output_path}')
def predict_video_frames(self, input_dir, target_size=None, output_dir=None):
"""Processes video frames with specialized visualization."""
output_dir = output_dir or os.path.join(input_dir, 'predictions')
os.makedirs(output_dir, exist_ok=True)
dataset = StreamingDataset(
input_dir,
classes=self.classes,
augmentation=get_validation_augmentations(
target_size, target_size
) if target_size else None,
preprocessing=self.config.preprocessing
)
image = cv2.imread(dataset.image_paths[0])
height, width = image.shape[:2]
white = 255 * np.ones((height, width))
black = np.zeros_like(white)
red = np.dstack((white, black, black))
blue = np.dstack((black, black, white))
# Pre-compute rotated versions
rotated_red = np.rot90(red)
rotated_blue = np.rot90(blue)
total_frames = len(dataset)
start_time = time.time()
for idx in range(total_frames):
if (idx + 1) % 10 == 0 or idx == total_frames - 1:
elapsed = time.time() - start_time
print(f'\rProcessed {idx+1}/{total_frames} frames in {elapsed:.1f}s', end='')
frame, height, width = dataset[idx]
filename = dataset.filenames[idx]
x_tensor = torch.from_numpy(frame).to(self.device).unsqueeze(0)
with torch.no_grad():
prediction = self.model.predict(x_tensor)
if self.config.n_classes > 1:
prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0)
masks = [prediction == i for i in range(1, self.config.n_classes)]
else:
prediction = prediction.squeeze().cpu().numpy().round()
masks = [prediction == 1]
if prediction.shape != (height, width):
prediction = cv2.resize(prediction, (width, height),
interpolation=cv2.INTER_NEAREST)
original = cv2.imread(os.path.join(input_dir, filename))
original = cv2.cvtColor(original, cv2.COLOR_BGR2RGB)
try:
for i, mask in enumerate(masks):
color = red if i == 0 else blue
rotated_color = rotated_red if i == 0 else rotated_blue
try:
original[mask,:] = 0.45*original[mask,:] + 0.55*color[mask,:]
except:
original[mask,:] = 0.45*original[mask,:] + 0.55*rotated_color[mask,:]
except:
print(f"\nWarning: Error processing frame {filename}")
continue
output_path = os.path.join(output_dir, filename)
imageio.imwrite(output_path, original, quality=100)
print(f'\nProcessed frames saved to: {output_dir}')
return output_dir
def _apply_color_mapping(self, prediction):
"""Applies color mapping to prediction."""
height, width = prediction.shape
colored = np.zeros((height, width, 3), dtype='uint8')
for i, class_name in enumerate(self.classes):
if class_name.lower() == 'background':
continue
color = self.colors[i]
colored[prediction == i] = color
return colored |