File size: 18,937 Bytes
8e5d8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8eebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5d8c7
8a8eebe
8e5d8c7
8a8eebe
 
8e5d8c7
 
8a8eebe
 
8e5d8c7
 
 
 
8a8eebe
 
8e5d8c7
 
 
 
 
 
8a8eebe
 
 
 
 
 
 
 
8e5d8c7
8a8eebe
 
 
 
8e5d8c7
 
8a8eebe
 
 
8e5d8c7
8a8eebe
 
8e5d8c7
8a8eebe
 
 
 
 
 
 
 
 
 
 
8e5d8c7
 
 
 
 
 
8a8eebe
 
 
8e5d8c7
8a8eebe
 
8e5d8c7
8a8eebe
 
 
 
 
 
 
 
8e5d8c7
 
8a8eebe
 
 
8e5d8c7
8a8eebe
8e5d8c7
8a8eebe
8e5d8c7
8a8eebe
 
 
 
 
 
 
 
 
 
 
 
8e5d8c7
8a8eebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5d8c7
 
8a8eebe
 
8e5d8c7
 
8a8eebe
8e5d8c7
 
8a8eebe
 
 
 
 
8e5d8c7
8a8eebe
 
8e5d8c7
 
8a8eebe
 
 
 
 
8e5d8c7
8a8eebe
8e5d8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import cv2
import time
import torch
import imageio
import tifffile
import numpy as np
import slidingwindow
import rasterio as rio
import geopandas as gpd
from shapely.geometry import Polygon
from rasterio import mask as riomask
from torch.utils.data import DataLoader
from SemanticModel.visualization import generate_color_mapping
from SemanticModel.image_preprocessing import get_validation_augmentations
from SemanticModel.data_loader import InferenceDataset, StreamingDataset
from SemanticModel.utilities import calc_image_size, convert_coordinates

class PredictionPipeline:
    def __init__(self, model_config, device=None):
        self.config = model_config
        self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.classes = ['background'] + model_config.classes if model_config.background_flag else model_config.classes
        self.colors = generate_color_mapping(len(self.classes))
        self.model = model_config.model.to(self.device)
        self.model.eval()

    def _preprocess_image(self, image_path, target_size=None):
        """Preprocesses single image for prediction."""
        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        height, width = image.shape[:2]
        
        target_size = target_size or max(height, width)
        test_height, test_width = calc_image_size(image, target_size)
        
        augmentation = get_validation_augmentations(test_width, test_height)
        image = augmentation(image=image)['image']
        image = self.config.preprocessing(image=image)['image']
        
        return image, (height, width)

    def predict_single_image(self, image_path, target_size=None, output_dir=None, 
                           format='integer', save_output=True):
        """Generates prediction for a single image."""
        image, original_dims = self._preprocess_image(image_path, target_size)
        x_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
        
        with torch.no_grad():
            prediction = self.model.predict(x_tensor)
            
        if self.config.n_classes > 1:
            prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0)
        else:
            prediction = prediction.squeeze().cpu().numpy().round()
        
        # Resize to original dimensions if needed
        if prediction.shape[:2] != original_dims:
            prediction = cv2.resize(prediction, original_dims[::-1], 
                                  interpolation=cv2.INTER_NEAREST)
        
        prediction = self._format_prediction(prediction, format)
        
        if save_output:
            self._save_prediction(prediction, image_path, output_dir, format)
        
        return prediction

    def predict_directory(self, input_dir, target_size=None, output_dir=None, 
                         fixed_size=True, format='integer'):
        """Generates predictions for all images in directory."""
        output_dir = output_dir or os.path.join(input_dir, 'predictions')
        os.makedirs(output_dir, exist_ok=True)
        
        dataset = InferenceDataset(
            input_dir,
            classes=self.classes,
            augmentation=get_validation_augmentations(
                target_size, target_size, fixed_size=fixed_size
            ) if target_size else None,
            preprocessing=self.config.preprocessing
        )
        
        total_images = len(dataset)
        start_time = time.time()
        
        for idx in range(total_images):
            if (idx + 1) % 10 == 0 or idx == total_images - 1:
                elapsed = time.time() - start_time
                print(f'\rProcessed {idx+1}/{total_images} images in {elapsed:.1f}s', 
                      end='')
                
            image, height, width = dataset[idx]
            filename = dataset.filenames[idx]
            
            x_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
            with torch.no_grad():
                prediction = self.model.predict(x_tensor)
            
            if self.config.n_classes > 1:
                prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0)
            else:
                prediction = prediction.squeeze().cpu().numpy().round()
            
            if prediction.shape != (height, width):
                prediction = cv2.resize(prediction, (width, height), 
                                     interpolation=cv2.INTER_NEAREST)
            
            prediction = self._format_prediction(prediction, format)
            self._save_prediction(prediction, filename, output_dir, format)
        
        print(f'\nPredictions saved to: {output_dir}')
        return output_dir

    def predict_raster(
            self,
            raster_path,
            tile_size=1024,
            overlap=0.175,
            boundary_path=None,
            output_path=None,
            format='integer'
    ):
        """
        Processes large raster images using a tiling approach. For each tile:
          1) Optionally checks a boundary mask (if provided) to skip tiles outside an ROI.
          2) Applies augmentations/preprocessing, then runs the model prediction.
          3) Resizes back to the tile's original size if necessary (e.g., after aug).
          4) Merges the tile predictions into a final 'pred_raster' (with confidence blending).

        Args:
            raster_path (str): Path to the large raster image (GeoTIFF).
            tile_size (int): Dimensions of each tile (default 1024).
            overlap (float): Overlap fraction between tiles (default 0.175).
            boundary_path (str): Path to shapefile/geojson for boundary region (optional).
            output_path (str): Path to save prediction (optional).
            format (str): 'integer' for integer mask, 'color' for RGB, etc.

        Returns:
            pred_raster (np.ndarray): 2D or 3D numpy array with the final merged prediction.
            profile (dict): Raster profile/metadata for georeferencing or saving.
        """

        print("Loading raster...")
        with rio.open(raster_path) as src:
            # Read [Bands, Height, Width] -> Move axis => [Height, Width, Bands]
            raster = src.read()
            raster = np.moveaxis(raster, 0, 2)
            raster = raster[:, :, :3]  # keep only first 3 bands if >3
            profile = src.profile
            transform = src.transform

        boundary_geom = None
        if boundary_path:
            boundary = gpd.read_file(boundary_path)
            boundary = boundary.to_crs(profile['crs'])
            boundary_geom = boundary.iloc[0].geometry

        print("Generating tiles...")
        tiles = slidingwindow.generate(
            raster,
            slidingwindow.DimOrder.HeightWidthChannel,
            tile_size,
            overlap
        )

        # Prepare the output arrays:
        # pred_raster => final integer (or color) predictions
        # confidence => track confidence per pixel to do max merging
        pred_raster = np.zeros_like(raster[:, :, 0], dtype='uint8')  # shape: (H, W)
        confidence = np.zeros_like(pred_raster, dtype=np.float32)  # shape: (H, W)

        # Get your augmentations/preprocessing
        aug = get_validation_augmentations(tile_size, tile_size, fixed_size=False)

        # -------------------------------
        # Iterate over each tile
        # -------------------------------
        for idx, tile in enumerate(tiles):
            if (idx + 1) % 10 == 0 or idx == len(tiles) - 1:
                print(f"\rProcessed {idx + 1}/{len(tiles)} tiles", end="")

            # tile.indices() = (slice(row_start, row_end), slice(col_start, col_end))
            bounds = tile.indices()

            # Extract tile from the big raster
            tile_image = raster[bounds[0], bounds[1]]
            # tile_image.shape => (tile_height, tile_width, channels)

            # print(f"\n[DEBUG] Tile #{idx}: tile_image shape before aug = {tile_image.shape}")

            # 1) Check for zero-size tile BEFORE augmentations
            if tile_image.shape[0] == 0 or tile_image.shape[1] == 0:
                # print("[DEBUG] Skipping tile => zero dimension BEFORE aug")
                continue

            # 2) If boundary is given, skip tile if it doesn't intersect
            if boundary_geom is not None:
                corners = [
                    convert_coordinates(transform, bounds[1].start, bounds[0].start),
                    convert_coordinates(transform, bounds[1].stop, bounds[0].start),
                    convert_coordinates(transform, bounds[1].stop, bounds[0].stop),
                    convert_coordinates(transform, bounds[1].start, bounds[0].stop)
                ]
                poly = Polygon(corners)
                if not poly.intersects(boundary_geom):
                    # print("[DEBUG] Skipping tile => outside boundary")
                    continue

            # 3) Apply augmentations
            processed = aug(image=tile_image)['image']
            # print(f"[DEBUG] processed shape after aug = {processed.shape}")

            # Check for zero-size tile AFTER augmentations
            if processed.shape[0] == 0 or processed.shape[1] == 0:
                # print("[DEBUG] Skipping tile => zero dimension AFTER aug")
                continue

            # 4) Preprocessing for the model
            processed = self.config.preprocessing(image=processed)['image']
            x_tensor = torch.from_numpy(processed).to(self.device).unsqueeze(0)

            # right after model inference and before merging into pred_raster ...

            with torch.no_grad():
                # Model output: shape ~ (1, n_classes, H_aug, W_aug)
                prediction = self.model.predict(x_tensor)
                # Remove batch dimension: (n_classes, H_aug, W_aug) for multi-class
                prediction = prediction.squeeze().cpu().numpy()

            # -----------------------------------------------------------------
            # 1) Convert raw logits -> label map (tile_pred) and confidence map
            # -----------------------------------------------------------------
            # If you have 'n_classes=4', `prediction.shape` might be (4, H_aug, W_aug).
            # We must ARGMAX across the class dimension to get a 2D label map.
            # In predict_raster() function, replace this part:

            if prediction.ndim == 3 and prediction.shape[0] == self.config.n_classes:
                # Multi-class case
                tile_pred = np.argmax(prediction, axis=0).astype(np.uint8)
                tile_conf = np.max(prediction, axis=0).astype(np.float32)
            else:
                # Binary case - take first channel if multiple channels
                if prediction.ndim == 3:
                    prediction = prediction[0]  # Take first channel
                tile_conf = np.abs(prediction - 0.5).astype(np.float32)
                tile_pred = np.round(prediction).astype(np.uint8)

            orig_hw = tile_image.shape[:2]  # (tile_height, tile_width)
            if tile_pred.shape != orig_hw:
                # print(f"[DEBUG] Resizing from {tile_pred.shape} to {orig_hw} ...")

                # Cast to float32 for cv2.resize
                tile_pred_float = tile_pred.astype(np.float32)
                tile_conf_float = tile_conf.astype(np.float32)

                # cv2 expects (width, height)
                cv2_size = (orig_hw[1], orig_hw[0])
                if cv2_size[0] == 0 or cv2_size[1] == 0:
                    # print("[DEBUG] Skipping tile => zero dimension for cv2_size!")
                    continue

                # NEAREST for label map, LINEAR for confidence
                tile_pred_resized = cv2.resize(
                    tile_pred_float, cv2_size, interpolation=cv2.INTER_NEAREST
                )
                tile_conf_resized = cv2.resize(
                    tile_conf_float, cv2_size, interpolation=cv2.INTER_LINEAR
                )

                # Convert back to appropriate dtypes
                tile_pred = np.round(tile_pred_resized).astype(np.uint8)
                tile_conf = tile_conf_resized.astype(np.float32)

            # -----------------------------------------------------------------
            # 3) Merge tile_pred into the final pred_raster / confidence arrays
            # -----------------------------------------------------------------
            existing_conf = confidence[bounds[0], bounds[1]]
            existing_pred = pred_raster[bounds[0], bounds[1]]

            mask = tile_conf > existing_conf
            existing_pred[mask] = tile_pred[mask]
            existing_conf[mask] = tile_conf[mask]

            pred_raster[bounds[0], bounds[1]] = existing_pred
            confidence[bounds[0], bounds[1]] = existing_conf


        print("\n Finished all tiles")

        # 9) Convert pred_raster to final format (color or integer)
        pred_raster = self._format_prediction(pred_raster, format)

        # 10) (Optional) Save if output_path or boundary_path provided
        if output_path or boundary_path:
            self._save_raster_prediction(
                pred_raster,
                raster_path,
                output_path,
                profile,
                boundary_geom if boundary_path else None
            )

        return pred_raster, profile

    def _format_prediction(self, prediction, format):
        """Formats prediction according to specified output type."""
        if format == 'integer':
            return prediction.astype('uint8')
        elif format == 'color':
            return self._apply_color_mapping(prediction)
        else:
            raise ValueError(f"Unsupported format: {format}")

    def _save_prediction(self, prediction, source_path, output_dir, format):
        """Saves prediction to disk."""
        filename = os.path.splitext(os.path.basename(source_path))[0]
        output_path = os.path.join(output_dir, f"{filename}_pred.png")
        cv2.imwrite(output_path, prediction)


    def _save_raster_prediction(self, prediction, source_path, output_path,
                              profile, boundary=None):
        """Saves raster prediction with geospatial information."""
        output_path = output_path or source_path.replace(
            os.path.splitext(source_path)[1], '_predicted.tif'
        )
        
        profile.update(
            dtype='uint8',
            count=3 if prediction.ndim == 3 else 1
        )
        
        with rio.open(output_path, 'w', **profile) as dst:
            if prediction.ndim == 3:
                for i in range(3):
                    dst.write(prediction[:,:,i], i+1)
            else:
                dst.write(prediction, 1)
        
        if boundary:
            with rio.open(output_path) as src:
                cropped, transform = riomask.mask(src, [boundary], crop=True)
                profile.update(
                    height=cropped.shape[1],
                    width=cropped.shape[2],
                    transform=transform
                )
            
            os.remove(output_path)
            with rio.open(output_path, 'w', **profile) as dst:
                dst.write(cropped)
        
        print(f'\nPrediction saved to: {output_path}')

    def predict_video_frames(self, input_dir, target_size=None, output_dir=None):
        """Processes video frames with specialized visualization."""
        output_dir = output_dir or os.path.join(input_dir, 'predictions')
        os.makedirs(output_dir, exist_ok=True)
        
        dataset = StreamingDataset(
            input_dir,
            classes=self.classes,
            augmentation=get_validation_augmentations(
                target_size, target_size
            ) if target_size else None,
            preprocessing=self.config.preprocessing
        )
        
        image = cv2.imread(dataset.image_paths[0])
        height, width = image.shape[:2]
        
        white = 255 * np.ones((height, width))
        black = np.zeros_like(white)
        red = np.dstack((white, black, black))
        blue = np.dstack((black, black, white))
        
        # Pre-compute rotated versions
        rotated_red = np.rot90(red)
        rotated_blue = np.rot90(blue)
        
        total_frames = len(dataset)
        start_time = time.time()
        
        for idx in range(total_frames):
            if (idx + 1) % 10 == 0 or idx == total_frames - 1:
                elapsed = time.time() - start_time
                print(f'\rProcessed {idx+1}/{total_frames} frames in {elapsed:.1f}s', end='')
            
            frame, height, width = dataset[idx]
            filename = dataset.filenames[idx]
            
            x_tensor = torch.from_numpy(frame).to(self.device).unsqueeze(0)
            with torch.no_grad():
                prediction = self.model.predict(x_tensor)
            
            if self.config.n_classes > 1:
                prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0)
                masks = [prediction == i for i in range(1, self.config.n_classes)]
            else:
                prediction = prediction.squeeze().cpu().numpy().round()
                masks = [prediction == 1]
            
            if prediction.shape != (height, width):
                prediction = cv2.resize(prediction, (width, height), 
                                     interpolation=cv2.INTER_NEAREST)
            
            original = cv2.imread(os.path.join(input_dir, filename))
            original = cv2.cvtColor(original, cv2.COLOR_BGR2RGB)
            
            try:
                for i, mask in enumerate(masks):
                    color = red if i == 0 else blue
                    rotated_color = rotated_red if i == 0 else rotated_blue
                    try:
                        original[mask,:] = 0.45*original[mask,:] + 0.55*color[mask,:]
                    except:
                        original[mask,:] = 0.45*original[mask,:] + 0.55*rotated_color[mask,:]
            except:
                print(f"\nWarning: Error processing frame {filename}")
                continue
            
            output_path = os.path.join(output_dir, filename)
            imageio.imwrite(output_path, original, quality=100)
        
        print(f'\nProcessed frames saved to: {output_dir}')
        return output_dir

    def _apply_color_mapping(self, prediction):
        """Applies color mapping to prediction."""
        height, width = prediction.shape
        colored = np.zeros((height, width, 3), dtype='uint8')
        
        for i, class_name in enumerate(self.classes):
            if class_name.lower() == 'background':
                continue
            color = self.colors[i]
            colored[prediction == i] = color
        
        return colored