import os import cv2 import time import torch import imageio import tifffile import numpy as np import slidingwindow import rasterio as rio import geopandas as gpd from shapely.geometry import Polygon from rasterio import mask as riomask from torch.utils.data import DataLoader from SemanticModel.visualization import generate_color_mapping from SemanticModel.image_preprocessing import get_validation_augmentations from SemanticModel.data_loader import InferenceDataset, StreamingDataset from SemanticModel.utilities import calc_image_size, convert_coordinates class PredictionPipeline: def __init__(self, model_config, device=None): self.config = model_config self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.classes = ['background'] + model_config.classes if model_config.background_flag else model_config.classes self.colors = generate_color_mapping(len(self.classes)) self.model = model_config.model.to(self.device) self.model.eval() def _preprocess_image(self, image_path, target_size=None): """Preprocesses single image for prediction.""" image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) height, width = image.shape[:2] target_size = target_size or max(height, width) test_height, test_width = calc_image_size(image, target_size) augmentation = get_validation_augmentations(test_width, test_height) image = augmentation(image=image)['image'] image = self.config.preprocessing(image=image)['image'] return image, (height, width) def predict_single_image(self, image_path, target_size=None, output_dir=None, format='integer', save_output=True): """Generates prediction for a single image.""" image, original_dims = self._preprocess_image(image_path, target_size) x_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0) with torch.no_grad(): prediction = self.model.predict(x_tensor) if self.config.n_classes > 1: prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0) else: prediction = prediction.squeeze().cpu().numpy().round() # Resize to original dimensions if needed if prediction.shape[:2] != original_dims: prediction = cv2.resize(prediction, original_dims[::-1], interpolation=cv2.INTER_NEAREST) prediction = self._format_prediction(prediction, format) if save_output: self._save_prediction(prediction, image_path, output_dir, format) return prediction def predict_directory(self, input_dir, target_size=None, output_dir=None, fixed_size=True, format='integer'): """Generates predictions for all images in directory.""" output_dir = output_dir or os.path.join(input_dir, 'predictions') os.makedirs(output_dir, exist_ok=True) dataset = InferenceDataset( input_dir, classes=self.classes, augmentation=get_validation_augmentations( target_size, target_size, fixed_size=fixed_size ) if target_size else None, preprocessing=self.config.preprocessing ) total_images = len(dataset) start_time = time.time() for idx in range(total_images): if (idx + 1) % 10 == 0 or idx == total_images - 1: elapsed = time.time() - start_time print(f'\rProcessed {idx+1}/{total_images} images in {elapsed:.1f}s', end='') image, height, width = dataset[idx] filename = dataset.filenames[idx] x_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0) with torch.no_grad(): prediction = self.model.predict(x_tensor) if self.config.n_classes > 1: prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0) else: prediction = prediction.squeeze().cpu().numpy().round() if prediction.shape != (height, width): prediction = cv2.resize(prediction, (width, height), interpolation=cv2.INTER_NEAREST) prediction = self._format_prediction(prediction, format) self._save_prediction(prediction, filename, output_dir, format) print(f'\nPredictions saved to: {output_dir}') return output_dir def predict_raster( self, raster_path, tile_size=1024, overlap=0.175, boundary_path=None, output_path=None, format='integer' ): """ Processes large raster images using a tiling approach. For each tile: 1) Optionally checks a boundary mask (if provided) to skip tiles outside an ROI. 2) Applies augmentations/preprocessing, then runs the model prediction. 3) Resizes back to the tile's original size if necessary (e.g., after aug). 4) Merges the tile predictions into a final 'pred_raster' (with confidence blending). Args: raster_path (str): Path to the large raster image (GeoTIFF). tile_size (int): Dimensions of each tile (default 1024). overlap (float): Overlap fraction between tiles (default 0.175). boundary_path (str): Path to shapefile/geojson for boundary region (optional). output_path (str): Path to save prediction (optional). format (str): 'integer' for integer mask, 'color' for RGB, etc. Returns: pred_raster (np.ndarray): 2D or 3D numpy array with the final merged prediction. profile (dict): Raster profile/metadata for georeferencing or saving. """ print("Loading raster...") with rio.open(raster_path) as src: # Read [Bands, Height, Width] -> Move axis => [Height, Width, Bands] raster = src.read() raster = np.moveaxis(raster, 0, 2) raster = raster[:, :, :3] # keep only first 3 bands if >3 profile = src.profile transform = src.transform boundary_geom = None if boundary_path: boundary = gpd.read_file(boundary_path) boundary = boundary.to_crs(profile['crs']) boundary_geom = boundary.iloc[0].geometry print("Generating tiles...") tiles = slidingwindow.generate( raster, slidingwindow.DimOrder.HeightWidthChannel, tile_size, overlap ) # Prepare the output arrays: # pred_raster => final integer (or color) predictions # confidence => track confidence per pixel to do max merging pred_raster = np.zeros_like(raster[:, :, 0], dtype='uint8') # shape: (H, W) confidence = np.zeros_like(pred_raster, dtype=np.float32) # shape: (H, W) # Get your augmentations/preprocessing aug = get_validation_augmentations(tile_size, tile_size, fixed_size=False) # ------------------------------- # Iterate over each tile # ------------------------------- for idx, tile in enumerate(tiles): if (idx + 1) % 10 == 0 or idx == len(tiles) - 1: print(f"\rProcessed {idx + 1}/{len(tiles)} tiles", end="") # tile.indices() = (slice(row_start, row_end), slice(col_start, col_end)) bounds = tile.indices() # Extract tile from the big raster tile_image = raster[bounds[0], bounds[1]] # tile_image.shape => (tile_height, tile_width, channels) # print(f"\n[DEBUG] Tile #{idx}: tile_image shape before aug = {tile_image.shape}") # 1) Check for zero-size tile BEFORE augmentations if tile_image.shape[0] == 0 or tile_image.shape[1] == 0: # print("[DEBUG] Skipping tile => zero dimension BEFORE aug") continue # 2) If boundary is given, skip tile if it doesn't intersect if boundary_geom is not None: corners = [ convert_coordinates(transform, bounds[1].start, bounds[0].start), convert_coordinates(transform, bounds[1].stop, bounds[0].start), convert_coordinates(transform, bounds[1].stop, bounds[0].stop), convert_coordinates(transform, bounds[1].start, bounds[0].stop) ] poly = Polygon(corners) if not poly.intersects(boundary_geom): # print("[DEBUG] Skipping tile => outside boundary") continue # 3) Apply augmentations processed = aug(image=tile_image)['image'] # print(f"[DEBUG] processed shape after aug = {processed.shape}") # Check for zero-size tile AFTER augmentations if processed.shape[0] == 0 or processed.shape[1] == 0: # print("[DEBUG] Skipping tile => zero dimension AFTER aug") continue # 4) Preprocessing for the model processed = self.config.preprocessing(image=processed)['image'] x_tensor = torch.from_numpy(processed).to(self.device).unsqueeze(0) # right after model inference and before merging into pred_raster ... with torch.no_grad(): # Model output: shape ~ (1, n_classes, H_aug, W_aug) prediction = self.model.predict(x_tensor) # Remove batch dimension: (n_classes, H_aug, W_aug) for multi-class prediction = prediction.squeeze().cpu().numpy() # ----------------------------------------------------------------- # 1) Convert raw logits -> label map (tile_pred) and confidence map # ----------------------------------------------------------------- # If you have 'n_classes=4', `prediction.shape` might be (4, H_aug, W_aug). # We must ARGMAX across the class dimension to get a 2D label map. # In predict_raster() function, replace this part: if prediction.ndim == 3 and prediction.shape[0] == self.config.n_classes: # Multi-class case tile_pred = np.argmax(prediction, axis=0).astype(np.uint8) tile_conf = np.max(prediction, axis=0).astype(np.float32) else: # Binary case - take first channel if multiple channels if prediction.ndim == 3: prediction = prediction[0] # Take first channel tile_conf = np.abs(prediction - 0.5).astype(np.float32) tile_pred = np.round(prediction).astype(np.uint8) orig_hw = tile_image.shape[:2] # (tile_height, tile_width) if tile_pred.shape != orig_hw: # print(f"[DEBUG] Resizing from {tile_pred.shape} to {orig_hw} ...") # Cast to float32 for cv2.resize tile_pred_float = tile_pred.astype(np.float32) tile_conf_float = tile_conf.astype(np.float32) # cv2 expects (width, height) cv2_size = (orig_hw[1], orig_hw[0]) if cv2_size[0] == 0 or cv2_size[1] == 0: # print("[DEBUG] Skipping tile => zero dimension for cv2_size!") continue # NEAREST for label map, LINEAR for confidence tile_pred_resized = cv2.resize( tile_pred_float, cv2_size, interpolation=cv2.INTER_NEAREST ) tile_conf_resized = cv2.resize( tile_conf_float, cv2_size, interpolation=cv2.INTER_LINEAR ) # Convert back to appropriate dtypes tile_pred = np.round(tile_pred_resized).astype(np.uint8) tile_conf = tile_conf_resized.astype(np.float32) # ----------------------------------------------------------------- # 3) Merge tile_pred into the final pred_raster / confidence arrays # ----------------------------------------------------------------- existing_conf = confidence[bounds[0], bounds[1]] existing_pred = pred_raster[bounds[0], bounds[1]] mask = tile_conf > existing_conf existing_pred[mask] = tile_pred[mask] existing_conf[mask] = tile_conf[mask] pred_raster[bounds[0], bounds[1]] = existing_pred confidence[bounds[0], bounds[1]] = existing_conf print("\n Finished all tiles") # 9) Convert pred_raster to final format (color or integer) pred_raster = self._format_prediction(pred_raster, format) # 10) (Optional) Save if output_path or boundary_path provided if output_path or boundary_path: self._save_raster_prediction( pred_raster, raster_path, output_path, profile, boundary_geom if boundary_path else None ) return pred_raster, profile def _format_prediction(self, prediction, format): """Formats prediction according to specified output type.""" if format == 'integer': return prediction.astype('uint8') elif format == 'color': return self._apply_color_mapping(prediction) else: raise ValueError(f"Unsupported format: {format}") def _save_prediction(self, prediction, source_path, output_dir, format): """Saves prediction to disk.""" filename = os.path.splitext(os.path.basename(source_path))[0] output_path = os.path.join(output_dir, f"{filename}_pred.png") cv2.imwrite(output_path, prediction) def _save_raster_prediction(self, prediction, source_path, output_path, profile, boundary=None): """Saves raster prediction with geospatial information.""" output_path = output_path or source_path.replace( os.path.splitext(source_path)[1], '_predicted.tif' ) profile.update( dtype='uint8', count=3 if prediction.ndim == 3 else 1 ) with rio.open(output_path, 'w', **profile) as dst: if prediction.ndim == 3: for i in range(3): dst.write(prediction[:,:,i], i+1) else: dst.write(prediction, 1) if boundary: with rio.open(output_path) as src: cropped, transform = riomask.mask(src, [boundary], crop=True) profile.update( height=cropped.shape[1], width=cropped.shape[2], transform=transform ) os.remove(output_path) with rio.open(output_path, 'w', **profile) as dst: dst.write(cropped) print(f'\nPrediction saved to: {output_path}') def predict_video_frames(self, input_dir, target_size=None, output_dir=None): """Processes video frames with specialized visualization.""" output_dir = output_dir or os.path.join(input_dir, 'predictions') os.makedirs(output_dir, exist_ok=True) dataset = StreamingDataset( input_dir, classes=self.classes, augmentation=get_validation_augmentations( target_size, target_size ) if target_size else None, preprocessing=self.config.preprocessing ) image = cv2.imread(dataset.image_paths[0]) height, width = image.shape[:2] white = 255 * np.ones((height, width)) black = np.zeros_like(white) red = np.dstack((white, black, black)) blue = np.dstack((black, black, white)) # Pre-compute rotated versions rotated_red = np.rot90(red) rotated_blue = np.rot90(blue) total_frames = len(dataset) start_time = time.time() for idx in range(total_frames): if (idx + 1) % 10 == 0 or idx == total_frames - 1: elapsed = time.time() - start_time print(f'\rProcessed {idx+1}/{total_frames} frames in {elapsed:.1f}s', end='') frame, height, width = dataset[idx] filename = dataset.filenames[idx] x_tensor = torch.from_numpy(frame).to(self.device).unsqueeze(0) with torch.no_grad(): prediction = self.model.predict(x_tensor) if self.config.n_classes > 1: prediction = np.argmax(prediction.squeeze().cpu().numpy(), axis=0) masks = [prediction == i for i in range(1, self.config.n_classes)] else: prediction = prediction.squeeze().cpu().numpy().round() masks = [prediction == 1] if prediction.shape != (height, width): prediction = cv2.resize(prediction, (width, height), interpolation=cv2.INTER_NEAREST) original = cv2.imread(os.path.join(input_dir, filename)) original = cv2.cvtColor(original, cv2.COLOR_BGR2RGB) try: for i, mask in enumerate(masks): color = red if i == 0 else blue rotated_color = rotated_red if i == 0 else rotated_blue try: original[mask,:] = 0.45*original[mask,:] + 0.55*color[mask,:] except: original[mask,:] = 0.45*original[mask,:] + 0.55*rotated_color[mask,:] except: print(f"\nWarning: Error processing frame {filename}") continue output_path = os.path.join(output_dir, filename) imageio.imwrite(output_path, original, quality=100) print(f'\nProcessed frames saved to: {output_dir}') return output_dir def _apply_color_mapping(self, prediction): """Applies color mapping to prediction.""" height, width = prediction.shape colored = np.zeros((height, width, 3), dtype='uint8') for i, class_name in enumerate(self.classes): if class_name.lower() == 'background': continue color = self.colors[i] colored[prediction == i] = color return colored