Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers.js
|
| 3 |
+
pipeline_tag: object-detection
|
| 4 |
+
license: agpl-3.0
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## Usage (Transformers.js)
|
| 8 |
+
|
| 9 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
| 10 |
+
```bash
|
| 11 |
+
npm i @xenova/transformers
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
**Example:** Perform object-detection.
|
| 15 |
+
```js
|
| 16 |
+
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
|
| 17 |
+
|
| 18 |
+
// Load model
|
| 19 |
+
const model = await AutoModel.from_pretrained('onnx-community/yolov10s', {
|
| 20 |
+
// quantized: false, // (Optional) Use unquantized version.
|
| 21 |
+
})
|
| 22 |
+
|
| 23 |
+
// Load processor
|
| 24 |
+
const processor = await AutoProcessor.from_pretrained('onnx-community/yolov10s');
|
| 25 |
+
|
| 26 |
+
// Read image and run processor
|
| 27 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
|
| 28 |
+
const image = await RawImage.read(url);
|
| 29 |
+
const { pixel_values } = await processor(image);
|
| 30 |
+
|
| 31 |
+
// Run object detection
|
| 32 |
+
const { output0 } = await model({ images: pixel_values });
|
| 33 |
+
const predictions = output0.tolist()[0];
|
| 34 |
+
const threshold = 0.5;
|
| 35 |
+
for (const [xmin, ymin, xmax, ymax, score, id] of predictions) {
|
| 36 |
+
if (score < threshold) continue;
|
| 37 |
+
const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ')
|
| 38 |
+
console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`)
|
| 39 |
+
}
|
| 40 |
+
// Found "car" at [448.81, 378.16, 639.25, 477.85] with score 0.95.
|
| 41 |
+
// Found "car" at [177.93, 338.54, 398.13, 417.66] with score 0.93.
|
| 42 |
+
// Found "bicycle" at [449.25, 475.36, 555.90, 537.42] with score 0.92.
|
| 43 |
+
// Found "bicycle" at [1.46, 517.67, 109.81, 584.15] with score 0.90.
|
| 44 |
+
// Found "bicycle" at [351.74, 524.63, 464.50, 588.63] with score 0.87.
|
| 45 |
+
// Found "person" at [550.09, 260.31, 591.83, 332.18] with score 0.85.
|
| 46 |
+
// Found "person" at [474.90, 429.96, 533.88, 535.70] with score 0.83.
|
| 47 |
+
// Found "traffic light" at [208.08, 55.58, 233.91, 102.01] with score 0.78.
|
| 48 |
+
// ...
|
| 49 |
+
```
|