File size: 960 Bytes
231da5b
 
 
 
 
 
4c31c97
 
231da5b
 
 
 
4c31c97
 
 
231da5b
 
 
 
4c31c97
f2f47ac
6ffe4f3
 
 
 
f2f47ac
6ffe4f3
 
 
 
231da5b
 
 
4c31c97
6ffe4f3
 
 
231da5b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pickle
from functools import cache

import polars as pl
from huggingface_hub import hf_hub_download

from utils.embed import embed
from utils.paths import DATA


@cache
def get_model():
    file_name = hf_hub_download(
        "opale-ai/news-classifier", "model/model.pickle", revision="main"
    )
    with open(file_name, "rb") as f:
        return pickle.load(f)


def get_record():
    df = pl.read_csv(DATA / "eval.csv")
    return {col: val for col, val in zip(df.columns, df.sample().row(0))}


def pred_record(rec):
    text_fields = ["meta_title", "meta_description", "content"]
    text = "\n\n".join(rec[k] for k in text_fields)
    embeds = embed([text])
    (pred,) = get_model().predict(embeds)
    return pred


def main():
    record = get_record()
    is_news = record["is_news_article"]
    pred = pred_record(record)
    print(f"is news (real): {is_news}")
    print(f"is news (pred): {pred}")


if __name__ == "__main__":
    main()