BigDong commited on
Commit
328bc7d
·
1 Parent(s): 8850a4e

add BitCPM4-1B model

Browse files
README.md CHANGED
@@ -1,3 +1,97 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ pipeline_tag: text-generation
7
+ library_name: transformers
8
  ---
9
+ <div align="center">
10
+ <img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
11
+ </div>
12
+
13
+ <p align="center">
14
+ <a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
15
+ <a href="TODO" target="_blank">Technical Report</a>
16
+ </p>
17
+ <p align="center">
18
+ 👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
19
+ </p>
20
+
21
+ ## What's New
22
+ - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report on [arXiv](TODO).🔥🔥🔥
23
+
24
+ ## MiniCPM4 Series
25
+ MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
26
+ - [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
27
+ - [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
28
+ - [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
29
+ - [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
30
+ - [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
31
+ - [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width. (**<-- you are here**)
32
+ - [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
33
+ - [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy user requirements.
34
+
35
+ ## Introduction
36
+ BitCPM4 are ternary quantized models derived from the MiniCPM series models through quantization-aware training (QAT), achieving significant improvements in both training efficiency and model parameter efficiency.
37
+ - Improvements of the training method
38
+ - Searching hyperparameters with a wind-tunnel on a small model.
39
+ - Using a two-stage training method: training in high-precision first and then QAT, making the best of the trained high-precision models and significantly reducing the computational resources required for the QAT phase.
40
+ - High parameter efficiency
41
+ - Achieving comparable performance to full-precision models of similar parameter models with a bit width of only 1.58 bits, demonstrating high parameter efficiency.
42
+
43
+ ## Usage
44
+ ### Inference with Transformers
45
+ BitCPM4's parameters are stored in a fake-quantized format, which supports direct inference within the Huggingface framework.
46
+ ```
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+ import torch
49
+
50
+ path = "openbmb/BitCPM4-1B"
51
+ device = "cuda"
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
54
+ model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
55
+
56
+ messages = [
57
+ {"role": "user", "content": "推荐5个北京的景点。"},
58
+ ]
59
+ model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
60
+
61
+ model_outputs = model.generate(
62
+ model_inputs,
63
+ max_new_tokens=1024,
64
+ top_p=0.7,
65
+ temperature=0.7
66
+ )
67
+
68
+ output_token_ids = [
69
+ model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
70
+ ]
71
+
72
+ responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
73
+ print(responses)
74
+ ```
75
+
76
+ ## Evaluation Results
77
+ BitCPM4's performance is comparable with other full-precision models in same model size.
78
+ ![Becchmark of BitCPM](https://raw.githubusercontent.com/OpenBMB/MiniCPM/refs/heads/minicpm-4/assets/minicpm4/bitcpm4-benchmark.png)
79
+
80
+ ## Statement
81
+ - As a language model, MiniCPM generates content by learning from a vast amount of text.
82
+ - However, it does not possess the ability to comprehend or express personal opinions or value judgments.
83
+ - Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
84
+ - Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
85
+
86
+ ## LICENSE
87
+ - This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
88
+ - The usage of MiniCPM model weights must strictly follow [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
89
+ - The models and weights of MiniCPM are completely free for academic research. after filling out a [questionnaire](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
90
+
91
+ ## Citation
92
+
93
+ - Please cite our [paper](TODO) if you find our work valuable.
94
+
95
+ ```bibtex
96
+ TODO
97
+ ```
added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|execute_end|>": 73444,
3
+ "<|execute_start|>": 73443,
4
+ "<|fim_middle|>": 73446,
5
+ "<|fim_prefix|>": 73445,
6
+ "<|fim_suffix|>": 73447,
7
+ "<|im_end|>": 73440,
8
+ "<|im_start|>": 73441,
9
+ "<|tool_call|>": 73442
10
+ }
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/MiniCPM4-0.5B",
3
+ "architectures": [
4
+ "MiniCPMForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_minicpm.MiniCPMConfig",
8
+ "AutoModel": "modeling_minicpm.MiniCPMModel",
9
+ "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
10
+ "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
11
+ "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
12
+ },
13
+ "bos_token_id": 1,
14
+ "eos_token_id": [2, 73440],
15
+ "hidden_act": "silu",
16
+ "hidden_size": 1536,
17
+ "initializer_range": 0.1,
18
+ "intermediate_size": 3840,
19
+ "max_position_embeddings": 32768,
20
+ "num_attention_heads": 24,
21
+ "num_hidden_layers": 52,
22
+ "num_key_value_heads": 8,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": {
25
+ "rope_type": "longrope",
26
+ "long_factor": [1.0004360675811768, 1.0668443441390991, 1.1631425619125366, 1.3025742769241333, 1.5040205717086792, 1.7941505908966064, 2.2101221084594727, 2.802666664123535, 3.6389970779418945, 4.804192543029785, 6.39855432510376, 8.527148246765137, 11.277542114257812, 14.684998512268066, 18.69317054748535, 23.13019371032715, 27.72362518310547, 32.1606559753418, 36.168827056884766, 39.57627868652344, 42.32667541503906, 44.45526885986328, 46.04962921142578, 47.21482849121094, 48.05115509033203, 48.64370346069336, 49.05967712402344, 49.34980392456055, 49.551246643066406, 49.69068145751953, 49.78697967529297, 49.85338592529297],
27
+ "short_factor": [1.0004360675811768, 1.0668443441390991, 1.1631425619125366, 1.3025742769241333, 1.5040205717086792, 1.7941505908966064, 2.2101221084594727, 2.802666664123535, 3.6389970779418945, 4.804192543029785, 6.39855432510376, 8.527148246765137, 11.277542114257812, 14.684998512268066, 18.69317054748535, 23.13019371032715, 27.72362518310547, 32.1606559753418, 36.168827056884766, 39.57627868652344, 42.32667541503906, 44.45526885986328, 46.04962921142578, 47.21482849121094, 48.05115509033203, 48.64370346069336, 49.05967712402344, 49.34980392456055, 49.551246643066406, 49.69068145751953, 49.78697967529297, 49.85338592529297],
28
+ "original_max_position_embeddings": 32768
29
+ },
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.46.3",
32
+ "use_cache": true,
33
+ "vocab_size": 73448,
34
+ "scale_emb": 12,
35
+ "dim_model_base": 256,
36
+ "scale_depth": 1.4
37
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """ MiniCPM model configuration"""
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.utils import logging
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
27
+
28
+
29
+ class MiniCPMConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the MiniCPM-7B.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`MiniCPMModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 11008):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
62
+ The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
63
+ MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ Padding token id.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ Beginning of stream token id.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ End of stream token id.
77
+ pretraining_tp (`int`, *optional*, defaults to 1):
78
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
79
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
80
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
81
+ issue](https://github.com/pytorch/pytorch/issues/76232).
82
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
83
+ Whether to tie weight embeddings
84
+ rope_theta (`float`, *optional*, defaults to 10000.0):
85
+ The base period of the RoPE embeddings.
86
+ rope_scaling (`Dict`, *optional*):
87
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
88
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
89
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
90
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
91
+ these scaling strategies behave:
92
+ https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
93
+ experimental feature, subject to breaking API changes in future versions.
94
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+
99
+ ```python
100
+ >>> from transformers import MiniCPMModel, MiniCPMConfig
101
+
102
+ >>> # Initializing a MiniCPM minicpm-7b style configuration
103
+ >>> configuration = MiniCPMConfig()
104
+
105
+ >>> # Initializing a model from the minicpm-7b style configuration
106
+ >>> model = MiniCPMModel(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'minicpm'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32000,
118
+ hidden_size=4096,
119
+ intermediate_size=11008,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ hidden_act='silu',
124
+ max_position_embeddings=2048,
125
+ initializer_range=0.02,
126
+ rms_norm_eps=1e-6,
127
+ use_cache=True,
128
+ pad_token_id=None,
129
+ bos_token_id=1,
130
+ eos_token_id=2,
131
+ pretraining_tp=1,
132
+ tie_word_embeddings=True,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ attention_bias=False,
136
+ attention_dropout=0.0,
137
+ scale_emb=1,
138
+ dim_model_base=1,
139
+ scale_depth=1,
140
+ mup_denominator=None,
141
+ sparse_config=None,
142
+ **kwargs):
143
+
144
+ self.vocab_size = vocab_size
145
+ self.max_position_embeddings = max_position_embeddings
146
+ self.hidden_size = hidden_size
147
+ self.intermediate_size = intermediate_size
148
+ self.num_hidden_layers = num_hidden_layers
149
+ self.num_attention_heads = num_attention_heads
150
+
151
+ # for backward compatibility
152
+ if num_key_value_heads is None:
153
+ num_key_value_heads = num_attention_heads
154
+
155
+ self.num_key_value_heads = num_key_value_heads
156
+ self.hidden_act = hidden_act
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.pretraining_tp = pretraining_tp
160
+ self.use_cache = use_cache
161
+ self.rope_theta = rope_theta
162
+ self.rope_scaling = rope_scaling
163
+ # self._rope_scaling_validation()
164
+ self.attention_bias = attention_bias
165
+ self.attention_dropout = attention_dropout
166
+ self.scale_emb = scale_emb
167
+ self.dim_model_base = dim_model_base
168
+ self.scale_depth = scale_depth
169
+ # only used for Eagle Head
170
+ self.mup_denominator = mup_denominator
171
+
172
+ # sparse config
173
+ self.sparse_config = sparse_config
174
+
175
+ super().__init__(
176
+ pad_token_id=pad_token_id,
177
+ bos_token_id=bos_token_id,
178
+ eos_token_id=eos_token_id,
179
+ tie_word_embeddings=tie_word_embeddings,
180
+ **kwargs,
181
+ )
182
+ try:
183
+ import flash_attn
184
+ self._attn_implementation = 'flash_attention_2'
185
+ except:
186
+ pass
187
+
188
+ def _rope_scaling_validation(self):
189
+ """
190
+ Validate the `rope_scaling` configuration.
191
+ """
192
+ if self.rope_scaling is None:
193
+ return
194
+
195
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
196
+ raise ValueError(
197
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
198
+ f'got {self.rope_scaling}'
199
+ )
200
+ rope_scaling_type = self.rope_scaling.get('type', None)
201
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
202
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
203
+ raise ValueError(
204
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
205
+ )
206
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
207
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 2,
6
+ 73440
7
+ ],
8
+ "pad_token_id": 2,
9
+ "temperature": 0.8,
10
+ "top_p": 0.8,
11
+ "transformers_version": "4.46.1"
12
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:905e6716227a0dfbb85e2ea8a0550a43a312b9fd516759800cee44b4d7decaed
3
+ size 4986458112
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d4f00c6cbd5a0c7e34c44ec16becffa8657bd05ce36b93a529f63f85e19567d
3
+ size 454630016
model.safetensors.index.json ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5441034240
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.31.input_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.31.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.31.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.31.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.31.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.31.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.32.input_layernorm.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.32.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.32.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.32.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.32.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.32.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.32.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.32.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.32.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.33.input_layernorm.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.33.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.33.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.33.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.33.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.33.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.33.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.33.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.33.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.34.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.34.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.34.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.34.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.34.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.34.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.34.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.34.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.34.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.35.input_layernorm.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.35.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.35.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.35.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.35.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.35.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.35.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.35.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.35.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.36.input_layernorm.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.36.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.36.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.36.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.36.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.36.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.36.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.36.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.36.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.37.input_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.37.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.37.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.37.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.37.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.37.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.37.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.37.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.37.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.38.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.38.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.38.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.38.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.38.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.38.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
301
+ "model.layers.38.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.38.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.38.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
304
+ "model.layers.39.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.39.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
306
+ "model.layers.39.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.39.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.39.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.39.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.39.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.39.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.39.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
313
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
316
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
318
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.40.input_layernorm.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.40.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.40.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
325
+ "model.layers.40.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.40.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.40.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
328
+ "model.layers.40.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.40.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
330
+ "model.layers.40.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.41.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.41.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.41.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.41.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.41.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.41.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.41.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.41.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.41.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
340
+ "model.layers.42.input_layernorm.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.42.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.42.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.42.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
344
+ "model.layers.42.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.42.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
346
+ "model.layers.42.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
347
+ "model.layers.42.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
348
+ "model.layers.42.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
349
+ "model.layers.43.input_layernorm.weight": "model-00001-of-00002.safetensors",
350
+ "model.layers.43.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.43.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
352
+ "model.layers.43.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
353
+ "model.layers.43.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
354
+ "model.layers.43.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
355
+ "model.layers.43.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
356
+ "model.layers.43.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.43.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
358
+ "model.layers.44.input_layernorm.weight": "model-00001-of-00002.safetensors",
359
+ "model.layers.44.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
360
+ "model.layers.44.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
361
+ "model.layers.44.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
362
+ "model.layers.44.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.44.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
364
+ "model.layers.44.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
365
+ "model.layers.44.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.44.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
367
+ "model.layers.45.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.45.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.45.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.45.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.45.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.45.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.45.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.45.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.45.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.46.input_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.46.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.46.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.46.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.46.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.46.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.46.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.46.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.46.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.47.input_layernorm.weight": "model-00002-of-00002.safetensors",
386
+ "model.layers.47.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
387
+ "model.layers.47.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
388
+ "model.layers.47.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
389
+ "model.layers.47.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
390
+ "model.layers.47.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.47.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.47.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.47.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.48.input_layernorm.weight": "model-00002-of-00002.safetensors",
395
+ "model.layers.48.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
396
+ "model.layers.48.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
397
+ "model.layers.48.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
398
+ "model.layers.48.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
399
+ "model.layers.48.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
400
+ "model.layers.48.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
401
+ "model.layers.48.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
402
+ "model.layers.48.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
403
+ "model.layers.49.input_layernorm.weight": "model-00002-of-00002.safetensors",
404
+ "model.layers.49.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
405
+ "model.layers.49.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
406
+ "model.layers.49.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
407
+ "model.layers.49.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
408
+ "model.layers.49.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
409
+ "model.layers.49.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
410
+ "model.layers.49.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
411
+ "model.layers.49.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
412
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.50.input_layernorm.weight": "model-00002-of-00002.safetensors",
422
+ "model.layers.50.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
423
+ "model.layers.50.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
424
+ "model.layers.50.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
425
+ "model.layers.50.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
426
+ "model.layers.50.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
427
+ "model.layers.50.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
428
+ "model.layers.50.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
429
+ "model.layers.50.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
430
+ "model.layers.51.input_layernorm.weight": "model-00002-of-00002.safetensors",
431
+ "model.layers.51.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
432
+ "model.layers.51.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
433
+ "model.layers.51.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
434
+ "model.layers.51.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
435
+ "model.layers.51.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
436
+ "model.layers.51.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
437
+ "model.layers.51.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
438
+ "model.layers.51.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
439
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
440
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
442
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
444
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
446
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
449
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
450
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
451
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
454
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
455
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
458
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
459
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
460
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
461
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
462
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
463
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
464
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
465
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
467
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
468
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
469
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
470
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
471
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
472
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
473
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
474
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
475
+ "model.norm.weight": "model-00002-of-00002.safetensors"
476
+ }
477
+ }
modeling_minicpm.py ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_end|>",
4
+ "<|im_start|>",
5
+ "<|tool_call|>",
6
+ "<|execute_start|>",
7
+ "<|execute_end|>",
8
+ "<|fim_prefix|>",
9
+ "<|fim_middle|>",
10
+ "<|fim_suffix|>"
11
+ ],
12
+ "bos_token": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "eos_token": {
20
+ "content": "<|im_end|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
3
+ size 1181204
tokenizer_config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "73440": {
31
+ "content": "<|im_end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "73441": {
39
+ "content": "<|im_start|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "73442": {
47
+ "content": "<|tool_call|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "73443": {
55
+ "content": "<|execute_start|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "73444": {
63
+ "content": "<|execute_end|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "73445": {
71
+ "content": "<|fim_prefix|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "73446": {
79
+ "content": "<|fim_middle|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "73447": {
87
+ "content": "<|fim_suffix|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ }
94
+ },
95
+ "additional_special_tokens": [
96
+ "<|im_end|>",
97
+ "<|im_start|>",
98
+ "<|tool_call|>",
99
+ "<|execute_start|>",
100
+ "<|execute_end|>",
101
+ "<|fim_prefix|>",
102
+ "<|fim_middle|>",
103
+ "<|fim_suffix|>"
104
+ ],
105
+ "bos_token": "<s>",
106
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
107
+ "clean_up_tokenization_spaces": false,
108
+ "eos_token": "<|im_end|>",
109
+ "legacy": true,
110
+ "model_max_length": 1000000000000000019884624838656,
111
+ "pad_token": null,
112
+ "sp_model_kwargs": {},
113
+ "spaces_between_special_tokens": false,
114
+ "tokenizer_class": "LlamaTokenizer",
115
+ "unk_token": "<unk>",
116
+ "use_default_system_prompt": false
117
+ }