Update README.md
Browse files
README.md
CHANGED
@@ -1,60 +1,94 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- zh
|
5 |
-
- en
|
6 |
-
pipeline_tag: text-generation
|
7 |
-
library_name: transformers
|
8 |
-
---
|
9 |
-
<div align="center">
|
10 |
-
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
11 |
-
</div>
|
12 |
-
|
13 |
-
<p align="center">
|
14 |
-
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
15 |
-
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
|
16 |
-
</p>
|
17 |
-
<p align="center">
|
18 |
-
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
19 |
-
</p>
|
20 |
-
|
21 |
-
## What's New
|
22 |
-
- [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).🔥🔥🔥
|
23 |
-
|
24 |
-
## MiniCPM4 Series
|
25 |
-
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
26 |
-
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
27 |
-
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
|
28 |
-
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
29 |
-
- [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
30 |
-
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
31 |
-
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
32 |
-
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
33 |
-
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements. (**<-- you are here**)
|
34 |
-
|
35 |
-
## Introduction
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
##
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
-
|
44 |
-
|
45 |
-
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
<div align="center">
|
10 |
+
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
11 |
+
</div>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
15 |
+
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
|
16 |
+
</p>
|
17 |
+
<p align="center">
|
18 |
+
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
19 |
+
</p>
|
20 |
+
|
21 |
+
## What's New
|
22 |
+
- [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).🔥🔥🔥
|
23 |
+
|
24 |
+
## MiniCPM4 Series
|
25 |
+
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
26 |
+
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
27 |
+
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
|
28 |
+
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
29 |
+
- [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
30 |
+
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
31 |
+
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
32 |
+
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
33 |
+
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements. (**<-- you are here**)
|
34 |
+
|
35 |
+
## Introduction
|
36 |
+
|
37 |
+
**MiniCPM4-MCP** is an open-source on-device LLM agent model jointly developed by [THUNLP](https://nlp.csai.tsinghua.edu.cn), Renmin University of China and [ModelBest](https://modelbest.cn/en), built on [MiniCPM-4](https://huggingface.co/openbmb/MiniCPM4-8B) with 8 billion parameters. It is capable of solving a wide range of real-world tasks by interacting with various tool and data resources through MCP.
|
38 |
+
|
39 |
+
## Usage
|
40 |
+
|
41 |
+
As of now, MiniCPM4-MCP supports the following:
|
42 |
+
|
43 |
+
- Utilization of tools across 16 MCP servers: These servers span various categories, including office, lifestyle, communication, information, and work management.
|
44 |
+
|
45 |
+
- Single-tool-calling capability: It can perform single- or multi-step tool calls using a single tool that complies with the MCP.
|
46 |
+
|
47 |
+
- Cross-tool-calling capability: It can perform single- or multi-step tool calls using different tools that complies with the MCP.
|
48 |
+
|
49 |
+
|
50 |
+
## Evaluation
|
51 |
+
The detailed evaluation script can be found on the GitHub page. The evaluation results are presented below.
|
52 |
+
|
53 |
+
| MCP Server | | gpt-4o | | | qwen3 | | | minicpm4 | |
|
54 |
+
|-----------------------|----------------|--------------|--------------|---------------|--------------|--------------|----------------|--------------|--------------|
|
55 |
+
| | func | param | value | func | param | value | func | param | value |
|
56 |
+
| Airbnb | 89.3 | 67.9 | 53.6 | 92.8 | 60.7 | 50.0 | 96.4 | 67.9 | 50.0 |
|
57 |
+
| Amap-Maps | 79.8 | 77.5 | 50.0 | 74.4 | 72.0 | 41.0 | 89.3 | 85.7 | 39.9 |
|
58 |
+
| Arxiv-MCP-Server | 85.7 | 85.7 | 85.7 | 81.8 | 54.5 | 50.0 | 57.1 | 57.1 | 52.4 |
|
59 |
+
| Calculator | 100.0 | 100.0 | 20.0 | 80.0 | 80.0 | 13.3 | 100.0 | 100.0 | 6.67 |
|
60 |
+
| Computor-Control-MCP | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 86.7 |
|
61 |
+
| Desktop-Commander | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
|
62 |
+
| Filesystem | 63.5 | 63.5 | 31.3 | 69.7 | 69.7 | 26.0 | 83.3 | 83.3 | 42.7 |
|
63 |
+
|Github | 92.0 | 80.0 | 58.0 | 80.5 | 50.0 | 27.7 | 62.8 | 25.7 | 17.1 |
|
64 |
+
| Gaode | 71.1 | 55.6 | 17.8 | 68.8 | 46.6 | 24.4 | 68.9 | 46.7 | 15.6 |
|
65 |
+
| MCP-Code-Executor | 85.0 | 80.0 | 70.0 | 80.0 | 80.0 | 70.0 | 90.0 | 90.0 | 65.0 |
|
66 |
+
| MCP-Docx | 95.8 | 86.7 | 67.1 | 94.9 | 81.6 | 60.1 | 95.1 | 86.6 | 76.1 |
|
67 |
+
| PPT | 72.6 | 49.8 | 40.9 | 85.9 | 50.7 | 37.5 | 91.2 | 72.1 | 56.7 |
|
68 |
+
| PPTx | 64.2 | 53.7 | 13.4 | 91.0 | 68.6 | 20.9 | 91.0 | 58.2 | 26.9 |
|
69 |
+
| Simple-Time-Server | 90.0 | 70.0 | 70.0 | 90.0 | 90.0 | 90.0 | 90.0 | 60.0 | 60.0 |
|
70 |
+
| Slack | 100.0 | 90.0 | 70.0 | 100.0 | 100.0 | 65.0 | 100.0 | 100.0 | 100.0 |
|
71 |
+
| Whisper | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 30.0 |
|
72 |
+
| **Average** | **80.2** | **70.2** | **49.1** | **83.5** | **67.7** | **43.8** | **88.3** | **76.1** | **51.2** |
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Statement
|
77 |
+
- As a language model, MiniCPM generates content by learning from a vast amount of text.
|
78 |
+
- However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
79 |
+
- Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
|
80 |
+
- Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
|
81 |
+
|
82 |
+
## LICENSE
|
83 |
+
- This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
84 |
+
|
85 |
+
## Citation
|
86 |
+
- Please cite our [paper](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf) if you find our work valuable.
|
87 |
+
|
88 |
+
```bibtex
|
89 |
+
@article{minicpm4,
|
90 |
+
title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
|
91 |
+
author={MiniCPM Team},
|
92 |
+
year={2025}
|
93 |
+
}
|
94 |
+
```
|