File size: 5,669 Bytes
974817f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import faiss
from fastapi import FastAPI
import torch
import pandas as pd
from collections import defaultdict
import pandas as pd
import jsonlines
from transformers import AutoModel, AutoTokenizer
import uvicorn
import asyncio
from pydantic import BaseModel
from typing import List,  Optional
import re
import json
import asyncio
import argparse


app = FastAPI()



model_name = "openbmb/MiniCPM-Embedding-Light"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") 
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

co = faiss.GpuMultipleClonerOptions()
co.shard = True
co.useFloat16 = True

faiss_index_path = "./index/index_abstract.faiss"  # Replace with your FAISS index path"
faiss_index = faiss.read_index(faiss_index_path)
faiss_index = faiss.index_cpu_to_all_gpus(faiss_index,co=co)

corpus_path = "./data/arxiv.jsonl"
with jsonlines.open(corpus_path) as f:
    paper_data = list(f)
paper_dict = {}
item_key = "text"


index_path = "./index/str_int_ids_abstract.csv"
index_df = pd.read_csv(index_path,converters={0: lambda x: str(x),1: lambda x: int(x)})
index_df.columns = ["str_id", "int_id"]
index_dict = index_df.set_index("int_id")["str_id"].to_dict()


for item in paper_data:
    paper_dict[item["bibkey"]] = item[item_key]

class QueryRequest(BaseModel):
    queries: List[str]
    topk: Optional[int] = None
    return_scores: bool = False

class MessageRequest(BaseModel):
    tool_calls: List
    topk: Optional[int] = 10
    
@app.post("/")
async def search_text_batch(request:MessageRequest):
    tool_calls = request.tool_calls
    topk = request.topk
    results = []
    finalize_indices = []
    search_engine_indices = []
    for i in range(len(tool_calls)):
        try:
            tool_calls[i]["name"]
        except KeyError:
            finalize_indices.append(i)
            continue
        if tool_calls[i]["name"] == "search_engine":
            search_engine_indices.append(i)
        elif tool_calls[i]["name"] == "finalize":
            finalize_indices.append(i)
        else:
            finalize_indices.append(i)
    

    tasks = []
    for i in range(len(tool_calls)):
        if i in search_engine_indices:
            tasks.append(call_search_engine(tool_calls[i], topk))
    search_task_results = await asyncio.gather(*tasks)
    num_search = 0
    num_finalize = 0
    for i in range(len(tool_calls)):
        if i in finalize_indices:
            search_keywords, bibkeys,abstracts, done, score = "",[], [], True, 0.0
            num_finalize += 1
        elif i in search_engine_indices:
            search_keywords, bibkeys, abstracts, done, score = search_task_results[num_search]
            num_search += 1
        
        titles = []
        for abstract in abstracts:
            try:
                title = abstract.split("\n")[1]
                title = title.split(":")[1].strip()
                titles.append(title)
            except:
                titles.append("")
        results.append({ "search_keywords":search_keywords, "summarys":abstracts, "done":done, "score":score, "titles":titles, "bibkeys":bibkeys})
    
        
    return results

def extract_tool_call(text: str):
    text = text.strip()

    pattern = r"<tool_call>(.*?)</tool_call>"
    match = re.search(pattern, text, re.DOTALL)
    if not match:
        return None
    tool_text = match.group(1)
    try:
        tool_call = json.loads(tool_text)
    except json.JSONDecodeError:
        return None
    return tool_call if isinstance(tool_call, dict) else None


def get_response(queries,ref):
    text_raw = paper_dict[str(ref)]
    text_raw = tokenizer(text_raw,  max_length=8192, truncation=True)
    text_raw = tokenizer.decode(text_raw["input_ids"])
   
    response = text_raw
    response = f"bibkey: {str(ref)}\n"+response
    return response

async def call_search_engine(tool_call, topk=10):
    try:
        queries = tool_call["arguments"]["query"]
        if isinstance(queries, str):
            queries = [queries]
        else:
            queries = list(queries)
            
        if len(queries) == 0:
            return "", [], [], False, 0.0
        results = defaultdict(dict)
        query_embedding_to_text,_ =  model.encode_query(queries, max_length=512, show_progress_bar=False)
        _,results = faiss_index.search(query_embedding_to_text, topk)
        result2query = {}
        merge_rrf = defaultdict(float)
        for i in range(len(results)):
            for j in range(len(results[i])):
                merge_rrf[results[i][j]] += 1/(j+1)
                result2query[results[i][j]] = queries[i]
        results = sorted(merge_rrf.items(), key=lambda x: x[1], reverse=True)
        
        results = [x[0] for x in results][:topk]
        
        # new_queries = [result2query[result] for result in results]
        queries = ",".join(queries)
       
        # bibkeys = [str(results[i]) for i in range(len(results))]
        bibkeys = [str(index_dict[results[i]]) for i in range(len(results))]
        response = [f"bibkey: {bibkey}\n{paper_dict[bibkey]}" for bibkey in bibkeys]
        return queries,bibkeys , response, False, 0.0
    except Exception as e:
        print(f"Error in call_search_engine: {e}")
        return "",[], [], False, 0.0



if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the FastAPI application.")
    parser.add_argument("--port", type=int, default=8400, help="Port to run the FastAPI application on.")
    args = parser.parse_args()
    
    
    uvicorn.run(app, host="0.0.0.0", port=args.port)