import torch.distributed import faiss import pandas as pd import faiss import numpy as np import jsonlines, json from transformers import AutoModel import os import torch ''' data format: { "bibkey": "some_bibkey", "text": "The abstract or text of the paper." } example: { "bibkey": "arxivid1234.5678", "text": "Title: A Study on Something\nAbstract: This paper discusses the findings of a study on something important in the field of research.\nAuthors: John Doe" } ''' model_name = "openbmb/MiniCPM-Embedding-Light" model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") input_path = "./data/arxiv.jsonl" with jsonlines.open(input_path) as f: survey_data = list(f) xids = [item["bibkey"] for item in survey_data] passages = [item["text"] for item in survey_data] embeddings_doc_dense, _ = model.encode_corpus(passages, max_length=1024) # faiss save index index = faiss.IndexFlatIP(embeddings_doc_dense.shape[1]) id_map_index = faiss.IndexIDMap(index) index = faiss.index_cpu_to_all_gpus(id_map_index) x_ids_int = np.array(np.arange(len(xids))) str_int_ids = {} for i in range(len(xids)): str_int_ids[xids[i]] = x_ids_int[i] str_int_ids_df = pd.DataFrame(str_int_ids, index=[0]).T.reset_index() str_int_ids_df.columns = ["str_id", "int_id"] str_int_ids_df.to_csv("./index/str_int_ids_abstract.csv", index=False) index.add_with_ids(embeddings_doc_dense, x_ids_int) index = faiss.index_gpu_to_cpu(index) faiss.write_index(index, "./index/index_abstract.faiss")