Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
demo.py
CHANGED
@@ -11,36 +11,42 @@ import cv2 as cv
|
|
11 |
|
12 |
from yunet import YuNet
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
try:
|
27 |
-
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
28 |
-
targets += [cv.dnn.DNN_TARGET_NPU]
|
29 |
-
help_msg_backends += "; {:d}: TIMVX"
|
30 |
-
help_msg_targets += "; {:d}: NPU"
|
31 |
-
except:
|
32 |
-
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
|
33 |
|
34 |
parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
|
35 |
-
parser.add_argument('--input', '-i', type=str,
|
36 |
-
|
37 |
-
parser.add_argument('--
|
38 |
-
|
39 |
-
parser.add_argument('--
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
args = parser.parse_args()
|
45 |
|
46 |
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
@@ -70,14 +76,17 @@ def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps
|
|
70 |
return output
|
71 |
|
72 |
if __name__ == '__main__':
|
|
|
|
|
|
|
73 |
# Instantiate YuNet
|
74 |
model = YuNet(modelPath=args.model,
|
75 |
inputSize=[320, 320],
|
76 |
confThreshold=args.conf_threshold,
|
77 |
nmsThreshold=args.nms_threshold,
|
78 |
topK=args.top_k,
|
79 |
-
backendId=
|
80 |
-
targetId=
|
81 |
|
82 |
# If input is an image
|
83 |
if args.input is not None:
|
@@ -134,4 +143,3 @@ if __name__ == '__main__':
|
|
134 |
cv.imshow('YuNet Demo', frame)
|
135 |
|
136 |
tm.reset()
|
137 |
-
|
|
|
11 |
|
12 |
from yunet import YuNet
|
13 |
|
14 |
+
# Check OpenCV version
|
15 |
+
assert cv.__version__ >= "4.7.0", \
|
16 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
17 |
+
|
18 |
+
# Valid combinations of backends and targets
|
19 |
+
backend_target_pairs = [
|
20 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
21 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
22 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
23 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
24 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
25 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
|
28 |
+
parser.add_argument('--input', '-i', type=str,
|
29 |
+
help='Usage: Set input to a certain image, omit if using camera.')
|
30 |
+
parser.add_argument('--model', '-m', type=str, default='face_detection_yunet_2022mar.onnx',
|
31 |
+
help="Usage: Set model type, defaults to 'face_detection_yunet_2022mar.onnx'.")
|
32 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
33 |
+
help='''Choose one of the backend-target pair to run this demo:
|
34 |
+
{:d}: (default) OpenCV implementation + CPU,
|
35 |
+
{:d}: CUDA + GPU (CUDA),
|
36 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
37 |
+
{:d}: TIM-VX + NPU,
|
38 |
+
{:d}: CANN + NPU
|
39 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
40 |
+
parser.add_argument('--conf_threshold', type=float, default=0.9,
|
41 |
+
help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
|
42 |
+
parser.add_argument('--nms_threshold', type=float, default=0.3,
|
43 |
+
help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.')
|
44 |
+
parser.add_argument('--top_k', type=int, default=5000,
|
45 |
+
help='Usage: Keep top_k bounding boxes before NMS.')
|
46 |
+
parser.add_argument('--save', '-s', action='store_true',
|
47 |
+
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
|
48 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
49 |
+
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
50 |
args = parser.parse_args()
|
51 |
|
52 |
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
|
|
76 |
return output
|
77 |
|
78 |
if __name__ == '__main__':
|
79 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
80 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
81 |
+
|
82 |
# Instantiate YuNet
|
83 |
model = YuNet(modelPath=args.model,
|
84 |
inputSize=[320, 320],
|
85 |
confThreshold=args.conf_threshold,
|
86 |
nmsThreshold=args.nms_threshold,
|
87 |
topK=args.top_k,
|
88 |
+
backendId=backend_id,
|
89 |
+
targetId=target_id)
|
90 |
|
91 |
# If input is an image
|
92 |
if args.input is not None:
|
|
|
143 |
cv.imshow('YuNet Demo', frame)
|
144 |
|
145 |
tm.reset()
|
|
yunet.py
CHANGED
@@ -33,19 +33,8 @@ class YuNet:
|
|
33 |
def name(self):
|
34 |
return self.__class__.__name__
|
35 |
|
36 |
-
def
|
37 |
self._backendId = backendId
|
38 |
-
self._model = cv.FaceDetectorYN.create(
|
39 |
-
model=self._modelPath,
|
40 |
-
config="",
|
41 |
-
input_size=self._inputSize,
|
42 |
-
score_threshold=self._confThreshold,
|
43 |
-
nms_threshold=self._nmsThreshold,
|
44 |
-
top_k=self._topK,
|
45 |
-
backend_id=self._backendId,
|
46 |
-
target_id=self._targetId)
|
47 |
-
|
48 |
-
def setTarget(self, targetId):
|
49 |
self._targetId = targetId
|
50 |
self._model = cv.FaceDetectorYN.create(
|
51 |
model=self._modelPath,
|
@@ -64,4 +53,3 @@ class YuNet:
|
|
64 |
# Forward
|
65 |
faces = self._model.detect(image)
|
66 |
return faces[1]
|
67 |
-
|
|
|
33 |
def name(self):
|
34 |
return self.__class__.__name__
|
35 |
|
36 |
+
def setBackendAndTarget(self, backendId, targetId):
|
37 |
self._backendId = backendId
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
self._targetId = targetId
|
39 |
self._model = cv.FaceDetectorYN.create(
|
40 |
model=self._modelPath,
|
|
|
53 |
# Forward
|
54 |
faces = self._model.detect(image)
|
55 |
return faces[1]
|
|