fengyuentau
commited on
Commit
·
ce28923
0
Parent(s):
Benchmark framework implementation and 3 models added:
Browse files* benchmark framework: benchmarks based on configs
* added impl and benchmark for YuNet (face detection)
* added impl and benchmark for DB (text detection)
* added impl and benchmark for CRNN (text recognition)
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Shiqi Yu <[email protected]>
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YuNet
|
2 |
+
|
3 |
+
YuNet is a light-weight, fast and accurate face detection model, which achieves 0.834(AP_easy), 0.824(AP_medium), 0.708(AP_hard) on the WIDER Face validation set.
|
4 |
+
|
5 |
+
## Demo
|
6 |
+
|
7 |
+
Run the following command to try the demo:
|
8 |
+
```shell
|
9 |
+
# detect on camera input
|
10 |
+
python demo.py
|
11 |
+
# detect on an image
|
12 |
+
python demo.py --input /path/to/image
|
13 |
+
```
|
14 |
+
|
15 |
+
## License
|
16 |
+
|
17 |
+
All files in this directory are licensed under [MIT License](./LICENSE).
|
18 |
+
|
19 |
+
## Reference
|
20 |
+
|
21 |
+
- https://github.com/ShiqiYu/libfacedetection
|
22 |
+
- https://github.com/ShiqiYu/libfacedetection.train
|
demo.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
from yunet import YuNet
|
13 |
+
|
14 |
+
def str2bool(v):
|
15 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
16 |
+
return True
|
17 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
18 |
+
return False
|
19 |
+
else:
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
|
23 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
24 |
+
parser.add_argument('--model', '-m', type=str, default='face_detection_yunet.onnx', help='Path to the model.')
|
25 |
+
parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.')
|
26 |
+
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
|
27 |
+
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
|
28 |
+
parser.add_argument('--keep_top_k', type=int, default=750, help='Keep keep_top_k bounding boxes after NMS.')
|
29 |
+
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
30 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
34 |
+
output = image.copy()
|
35 |
+
landmark_color = [
|
36 |
+
(255, 0, 0), # right eye
|
37 |
+
( 0, 0, 255), # left eye
|
38 |
+
( 0, 255, 0), # nose tip
|
39 |
+
(255, 0, 255), # right mouth corner
|
40 |
+
( 0, 255, 255) # left mouth corner
|
41 |
+
]
|
42 |
+
|
43 |
+
if fps is not None:
|
44 |
+
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
|
45 |
+
|
46 |
+
for det in results:
|
47 |
+
bbox = det[0:4].astype(np.int32)
|
48 |
+
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2)
|
49 |
+
|
50 |
+
conf = det[-1]
|
51 |
+
cv.putText(output, '{:.4f}'.format(conf), (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color)
|
52 |
+
|
53 |
+
landmarks = det[4:14].astype(np.int32).reshape((5,2))
|
54 |
+
for idx, landmark in enumerate(landmarks):
|
55 |
+
cv.circle(output, landmark, 2, landmark_color[idx], 2)
|
56 |
+
|
57 |
+
return output
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
# Instantiate YuNet
|
61 |
+
model = YuNet(modelPath=args.model,
|
62 |
+
inputSize=[320, 320],
|
63 |
+
confThreshold=args.conf_threshold,
|
64 |
+
nmsThreshold=args.nms_threshold,
|
65 |
+
topK=args.top_k,
|
66 |
+
keepTopK=args.keep_top_k)
|
67 |
+
|
68 |
+
# If input is an image
|
69 |
+
if args.input is not None:
|
70 |
+
image = cv.imread(args.input)
|
71 |
+
h, w, _ = image.shape
|
72 |
+
|
73 |
+
# Inference
|
74 |
+
model.setInputSize([w, h])
|
75 |
+
results = model.infer(image)
|
76 |
+
|
77 |
+
# Print results
|
78 |
+
print('{} faces detected.'.format(results.shape[0]))
|
79 |
+
for idx, det in enumerate(results):
|
80 |
+
print('{}: [{:.0f}, {:.0f}] [{:.0f}, {:.0f}], {:.2f}'.format(
|
81 |
+
idx, det[0], det[1], det[2], det[3], det[-1])
|
82 |
+
)
|
83 |
+
|
84 |
+
# Draw results on the input image
|
85 |
+
image = visualize(image, results)
|
86 |
+
|
87 |
+
# Save results if save is true
|
88 |
+
if args.save:
|
89 |
+
print('Resutls saved to result.jpg\n')
|
90 |
+
cv.imwrite('result.jpg', image)
|
91 |
+
|
92 |
+
# Visualize results in a new window
|
93 |
+
if args.vis:
|
94 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
95 |
+
cv.imshow(args.input, image)
|
96 |
+
cv.waitKey(0)
|
97 |
+
else: # Omit input to call default camera
|
98 |
+
deviceId = 0
|
99 |
+
cap = cv.VideoCapture(deviceId)
|
100 |
+
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
101 |
+
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
102 |
+
model.setInputSize([w, h])
|
103 |
+
|
104 |
+
tm = cv.TickMeter()
|
105 |
+
while cv.waitKey(1) < 0:
|
106 |
+
hasFrame, frame = cap.read()
|
107 |
+
if not hasFrame:
|
108 |
+
print('No frames grabbed!')
|
109 |
+
break
|
110 |
+
|
111 |
+
# Inference
|
112 |
+
tm.start()
|
113 |
+
results = model.infer(frame) # results is a tuple
|
114 |
+
tm.stop()
|
115 |
+
|
116 |
+
# Draw results on the input image
|
117 |
+
frame = visualize(frame, results, fps=tm.getFPS())
|
118 |
+
|
119 |
+
# Visualize results in a new Window
|
120 |
+
cv.imshow('YuNet Demo', frame)
|
121 |
+
|
122 |
+
tm.reset()
|
yunet.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
from itertools import product
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
class YuNet:
|
13 |
+
def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, keepTopK=750):
|
14 |
+
self._modelPath = modelPath
|
15 |
+
self._model = cv.dnn.readNet(self._modelPath)
|
16 |
+
|
17 |
+
self._inputNames = ''
|
18 |
+
self._outputNames = ['loc', 'conf', 'iou']
|
19 |
+
self._inputSize = inputSize # [w, h]
|
20 |
+
self._confThreshold = confThreshold
|
21 |
+
self._nmsThreshold = nmsThreshold
|
22 |
+
self._topK = topK
|
23 |
+
self._keepTopK = keepTopK
|
24 |
+
|
25 |
+
self._min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
|
26 |
+
self._steps = [8, 16, 32, 64]
|
27 |
+
self._variance = [0.1, 0.2]
|
28 |
+
|
29 |
+
# Generate priors
|
30 |
+
self._priorGen()
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self.__class__.__name__
|
35 |
+
|
36 |
+
def setBackend(self, backend):
|
37 |
+
self._model.setPreferableBackend(backend)
|
38 |
+
|
39 |
+
def setTarget(self, target):
|
40 |
+
self._model.setPreferableTarget(target)
|
41 |
+
|
42 |
+
def setInputSize(self, input_size):
|
43 |
+
self._inputSize = input_size # [w, h]
|
44 |
+
|
45 |
+
# Regenerate priors
|
46 |
+
self._priorGen()
|
47 |
+
|
48 |
+
def _preprocess(self, image):
|
49 |
+
return cv.dnn.blobFromImage(image)
|
50 |
+
|
51 |
+
def infer(self, image):
|
52 |
+
assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
|
53 |
+
assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
|
54 |
+
|
55 |
+
# Preprocess
|
56 |
+
inputBlob = self._preprocess(image)
|
57 |
+
|
58 |
+
# Forward
|
59 |
+
self._model.setInput(inputBlob, self._inputNames)
|
60 |
+
outputBlob = self._model.forward(self._outputNames)
|
61 |
+
|
62 |
+
# Postprocess
|
63 |
+
results = self._postprocess(outputBlob)
|
64 |
+
|
65 |
+
return results
|
66 |
+
|
67 |
+
def _postprocess(self, outputBlob):
|
68 |
+
# Decode
|
69 |
+
dets = self._decode(outputBlob)
|
70 |
+
|
71 |
+
# NMS
|
72 |
+
keepIdx = cv.dnn.NMSBoxes(
|
73 |
+
bboxes=dets[:, 0:4].tolist(),
|
74 |
+
scores=dets[:, -1].tolist(),
|
75 |
+
score_threshold=self._confThreshold,
|
76 |
+
nms_threshold=self._nmsThreshold,
|
77 |
+
top_k=self._topK
|
78 |
+
) # box_num x class_num
|
79 |
+
if len(keepIdx) > 0:
|
80 |
+
dets = dets[keepIdx]
|
81 |
+
dets = np.squeeze(dets, axis=1)
|
82 |
+
return dets[:self._keepTopK]
|
83 |
+
else:
|
84 |
+
return np.empty(shape=(0, 15))
|
85 |
+
|
86 |
+
def _priorGen(self):
|
87 |
+
w, h = self._inputSize
|
88 |
+
feature_map_2th = [int(int((h + 1) / 2) / 2),
|
89 |
+
int(int((w + 1) / 2) / 2)]
|
90 |
+
feature_map_3th = [int(feature_map_2th[0] / 2),
|
91 |
+
int(feature_map_2th[1] / 2)]
|
92 |
+
feature_map_4th = [int(feature_map_3th[0] / 2),
|
93 |
+
int(feature_map_3th[1] / 2)]
|
94 |
+
feature_map_5th = [int(feature_map_4th[0] / 2),
|
95 |
+
int(feature_map_4th[1] / 2)]
|
96 |
+
feature_map_6th = [int(feature_map_5th[0] / 2),
|
97 |
+
int(feature_map_5th[1] / 2)]
|
98 |
+
|
99 |
+
feature_maps = [feature_map_3th, feature_map_4th,
|
100 |
+
feature_map_5th, feature_map_6th]
|
101 |
+
|
102 |
+
priors = []
|
103 |
+
for k, f in enumerate(feature_maps):
|
104 |
+
min_sizes = self._min_sizes[k]
|
105 |
+
for i, j in product(range(f[0]), range(f[1])): # i->h, j->w
|
106 |
+
for min_size in min_sizes:
|
107 |
+
s_kx = min_size / w
|
108 |
+
s_ky = min_size / h
|
109 |
+
|
110 |
+
cx = (j + 0.5) * self._steps[k] / w
|
111 |
+
cy = (i + 0.5) * self._steps[k] / h
|
112 |
+
|
113 |
+
priors.append([cx, cy, s_kx, s_ky])
|
114 |
+
self.priors = np.array(priors, dtype=np.float32)
|
115 |
+
|
116 |
+
def _decode(self, outputBlob):
|
117 |
+
loc, conf, iou = outputBlob
|
118 |
+
# get score
|
119 |
+
cls_scores = conf[:, 1]
|
120 |
+
iou_scores = iou[:, 0]
|
121 |
+
# clamp
|
122 |
+
_idx = np.where(iou_scores < 0.)
|
123 |
+
iou_scores[_idx] = 0.
|
124 |
+
_idx = np.where(iou_scores > 1.)
|
125 |
+
iou_scores[_idx] = 1.
|
126 |
+
scores = np.sqrt(cls_scores * iou_scores)
|
127 |
+
scores = scores[:, np.newaxis]
|
128 |
+
|
129 |
+
scale = np.array(self._inputSize)
|
130 |
+
|
131 |
+
# get bboxes
|
132 |
+
bboxes = np.hstack((
|
133 |
+
(self.priors[:, 0:2] + loc[:, 0:2] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
134 |
+
(self.priors[:, 2:4] * np.exp(loc[:, 2:4] * self._variance)) * scale
|
135 |
+
))
|
136 |
+
# (x_c, y_c, w, h) -> (x1, y1, w, h)
|
137 |
+
bboxes[:, 0:2] -= bboxes[:, 2:4] / 2
|
138 |
+
|
139 |
+
# get landmarks
|
140 |
+
landmarks = np.hstack((
|
141 |
+
(self.priors[:, 0:2] + loc[:, 4: 6] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
142 |
+
(self.priors[:, 0:2] + loc[:, 6: 8] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
143 |
+
(self.priors[:, 0:2] + loc[:, 8:10] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
144 |
+
(self.priors[:, 0:2] + loc[:, 10:12] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
145 |
+
(self.priors[:, 0:2] + loc[:, 12:14] * self._variance[0] * self.priors[:, 2:4]) * scale
|
146 |
+
))
|
147 |
+
|
148 |
+
dets = np.hstack((bboxes, landmarks, scores))
|
149 |
+
return dets
|