File size: 7,062 Bytes
d1b601c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a397da
d1b601c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9464ab9
d1b601c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import sys
import argparse

import numpy as np
import cv2 as cv

from mp_handpose import MPHandPose

sys.path.append('../palm_detection_mediapipe')
from mp_palmdet import MPPalmDet

def str2bool(v):
    if v.lower() in ['on', 'yes', 'true', 'y', 't']:
        return True
    elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
        return False
    else:
        raise NotImplementedError

backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
    backends += [cv.dnn.DNN_BACKEND_TIMVX]
    targets += [cv.dnn.DNN_TARGET_NPU]
    help_msg_backends += "; {:d}: TIMVX"
    help_msg_targets += "; {:d}: NPU"
except:
    print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')

parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2022may.onnx', help='Path to the model.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--conf_threshold', type=float, default=0.8, help='Filter out hands of confidence < conf_threshold.')
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()


def visualize(image, hands, print_result=False):
    output = image.copy()

    for idx, handpose in enumerate(hands):
        conf = handpose[-1]
        bbox = handpose[0:4].astype(np.int32)
        landmarks = handpose[4:-1].reshape(21, 2).astype(np.int32)

        # Print results
        if print_result:
            print('-----------hand {}-----------'.format(idx + 1))
            print('conf: {:.2f}'.format(conf))
            print('hand box: {}'.format(bbox))
            print('hand landmarks: ')
            for l in landmarks:
                print('\t{}'.format(l))

        # Draw line between each key points
        cv.line(output, landmarks[0], landmarks[1], (255, 255, 255), 2)
        cv.line(output, landmarks[1], landmarks[2], (255, 255, 255), 2)
        cv.line(output, landmarks[2], landmarks[3], (255, 255, 255), 2)
        cv.line(output, landmarks[3], landmarks[4], (255, 255, 255), 2)

        cv.line(output, landmarks[0], landmarks[5], (255, 255, 255), 2)
        cv.line(output, landmarks[5], landmarks[6], (255, 255, 255), 2)
        cv.line(output, landmarks[6], landmarks[7], (255, 255, 255), 2)
        cv.line(output, landmarks[7], landmarks[8], (255, 255, 255), 2)

        cv.line(output, landmarks[0], landmarks[9], (255, 255, 255), 2)
        cv.line(output, landmarks[9], landmarks[10], (255, 255, 255), 2)
        cv.line(output, landmarks[10], landmarks[11], (255, 255, 255), 2)
        cv.line(output, landmarks[11], landmarks[12], (255, 255, 255), 2)

        cv.line(output, landmarks[0], landmarks[13], (255, 255, 255), 2)
        cv.line(output, landmarks[13], landmarks[14], (255, 255, 255), 2)
        cv.line(output, landmarks[14], landmarks[15], (255, 255, 255), 2)
        cv.line(output, landmarks[15], landmarks[16], (255, 255, 255), 2)

        cv.line(output, landmarks[0], landmarks[17], (255, 255, 255), 2)
        cv.line(output, landmarks[17], landmarks[18], (255, 255, 255), 2)
        cv.line(output, landmarks[18], landmarks[19], (255, 255, 255), 2)
        cv.line(output, landmarks[19], landmarks[20], (255, 255, 255), 2)

        for p in landmarks:
            cv.circle(output, p, 2, (0, 0, 255), 2)

    return output


if __name__ == '__main__':
    # palm detector
    palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
                              nmsThreshold=0.3,
                              scoreThreshold=0.8,
                              backendId=args.backend,
                              targetId=args.target)
    # handpose detector
    handpose_detector = MPHandPose(modelPath=args.model,
                                   confThreshold=args.conf_threshold,
                                   backendId=args.backend,
                                   targetId=args.target)

    # If input is an image
    if args.input is not None:
        image = cv.imread(args.input)

        # Palm detector inference
        palms = palm_detector.infer(image)
        hands = np.empty(shape=(0, 47))

        # Estimate the pose of each hand
        for palm in palms:
            # Handpose detector inference
            handpose = handpose_detector.infer(image, palm)
            if handpose is not None:
                hands = np.vstack((hands, handpose))
        # Draw results on the input image
        image = visualize(image, hands, True)

        if len(palms) == 0:
            print('No palm detected!')

        # Save results
        if args.save:
            cv.imwrite('result.jpg', image)
            print('Results saved to result.jpg\n')

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, image)
            cv.waitKey(0)
    else:  # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, frame = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            # Palm detector inference
            palms = palm_detector.infer(frame)
            hands = np.empty(shape=(0, 47))

            tm.start()
            # Estimate the pose of each hand
            for palm in palms:
                # Handpose detector inference
                handpose = handpose_detector.infer(frame, palm)
                if handpose is not None:
                    hands = np.vstack((hands, handpose))
            tm.stop()
            # Draw results on the input image
            frame = visualize(frame, hands)

            if len(palms) == 0:
                print('No palm detected!')
            else:
                cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))

            cv.imshow('MediaPipe Handpose Detection Demo', frame)
            tm.reset()