File size: 7,580 Bytes
d1b601c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import cv2 as cv


class MPHandPose:
    def __init__(self, modelPath, confThreshold=0.8, backendId=0, targetId=0):
        self.model_path = modelPath
        self.conf_threshold = confThreshold
        self.backend_id = backendId
        self.target_id = targetId

        self.input_size = np.array([256, 256])  # wh
        self.PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2]
        self.PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0
        self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2
        self.PALM_BOX_SHIFT_VECTOR = [0, -0.4]
        self.PALM_BOX_ENLARGE_FACTOR = 3
        self.HAND_BOX_SHIFT_VECTOR = [0, -0.1]
        self.HAND_BOX_ENLARGE_FACTOR = 1.65

        self.model = cv.dnn.readNet(self.model_path)
        self.model.setPreferableBackend(self.backend_id)
        self.model.setPreferableTarget(self.target_id)

    @property
    def name(self):
        return self.__class__.__name__

    def setBackend(self, backendId):
        self.backend_id = backendId
        self.model.setPreferableBackend(self.backend_id)

    def setTarget(self, targetId):
        self.target_id = targetId
        self.model.setPreferableTarget(self.target_id)

    def _preprocess(self, image, palm):
        '''
        Rotate input for inference.
        Parameters:
          image - input image of BGR channel order
          palm_bbox - palm bounding box found in image of format [[x1, y1], [x2, y2]] (top-left and bottom-right points)
          palm_landmarks - 7 landmarks (5 finger base points, 2 palm base points) of shape [7, 2]
        Returns:
          rotated_hand - rotated hand image for inference
          rotation_matrix - matrix for rotation and de-rotation
        '''
        # Rotate input to have vertically oriented hand image
        #  compute rotation
        palm_bbox = palm[0:4].reshape(2, 2)
        palm_landmarks = palm[4:18].reshape(7, 2)
        image = cv.cvtColor(image, cv.COLOR_BGR2RGB)

        p1 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_PALM_BASE]
        p2 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]
        radians = np.pi / 2 - np.arctan2(-(p2[1] - p1[1]), p2[0] - p1[0])
        radians = radians - 2 * np.pi * np.floor((radians + np.pi) / (2 * np.pi))
        angle = np.rad2deg(radians)
        #  get bbox center
        center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
        #  get rotation matrix
        rotation_matrix = cv.getRotationMatrix2D(center_palm_bbox, angle, 1.0)
        #  get rotated image
        rotated_image = cv.warpAffine(image, rotation_matrix, (image.shape[1], image.shape[0]))
        #  get bounding boxes from rotated palm landmarks
        homogeneous_coord = np.c_[palm_landmarks, np.ones(palm_landmarks.shape[0])]
        rotated_palm_landmarks = np.array([
            np.dot(homogeneous_coord, rotation_matrix[0]),
            np.dot(homogeneous_coord, rotation_matrix[1])])
        #  get landmark bounding box
        rotated_palm_bbox = np.array([
            np.amin(rotated_palm_landmarks, axis=1),
            np.amax(rotated_palm_landmarks, axis=1)])  # [top-left, bottom-right]

        #  shift bounding box
        wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
        shift_vector = self.PALM_BOX_SHIFT_VECTOR * wh_rotated_palm_bbox
        rotated_palm_bbox = rotated_palm_bbox + shift_vector
        #  squarify bounding boxx
        center_rotated_plam_bbox = np.sum(rotated_palm_bbox, axis=0) / 2
        wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
        new_half_size = np.amax(wh_rotated_palm_bbox) / 2
        rotated_palm_bbox = np.array([
            center_rotated_plam_bbox - new_half_size,
            center_rotated_plam_bbox + new_half_size])

        #  enlarge bounding box
        center_rotated_plam_bbox = np.sum(rotated_palm_bbox, axis=0) / 2
        wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
        new_half_size = wh_rotated_palm_bbox * self.PALM_BOX_ENLARGE_FACTOR / 2
        rotated_palm_bbox = np.array([
            center_rotated_plam_bbox - new_half_size,
            center_rotated_plam_bbox + new_half_size])

        # Crop and resize the rotated image by the bounding box
        [[x1, y1], [x2, y2]] = rotated_palm_bbox.astype(np.int32)
        diff = np.maximum([-x1, -y1, x2 - rotated_image.shape[1], y2 - rotated_image.shape[0]], 0)
        [x1, y1, x2, y2] = [x1, y1, x2, y2] + diff
        crop = rotated_image[y1:y2, x1:x2, :]
        crop = cv.copyMakeBorder(crop, diff[1], diff[3], diff[0], diff[2], cv.BORDER_CONSTANT, value=(0, 0, 0))
        blob = cv.resize(crop, dsize=self.input_size, interpolation=cv.INTER_AREA).astype(np.float32) / 255.0

        return blob[np.newaxis, :, :, :], rotated_palm_bbox, angle, rotation_matrix

    def infer(self, image, palm):
        # Preprocess
        input_blob, rotated_palm_bbox, angle, rotation_matrix = self._preprocess(image, palm)

        # Forward
        self.model.setInput(input_blob)
        output_blob = self.model.forward(self.model.getUnconnectedOutLayersNames())

        # Postprocess
        results = self._postprocess(output_blob, rotated_palm_bbox, angle, rotation_matrix)
        return results # [bbox_coords, landmarks_coords, conf]

    def _postprocess(self, blob, rotated_palm_bbox, angle, rotation_matrix):
        landmarks, conf = blob

        if conf < self.conf_threshold:
            return None

        landmarks = landmarks.reshape(-1, 3)  # shape: (1, 63) -> (21, 3)

        # transform coords back to the input coords
        wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
        scale_factor = wh_rotated_palm_bbox / self.input_size
        landmarks[:, :2] = (landmarks[:, :2] - self.input_size / 2) * scale_factor
        coords_rotation_matrix = cv.getRotationMatrix2D((0, 0), angle, 1.0)
        rotated_landmarks = np.dot(landmarks[:, :2], coords_rotation_matrix[:, :2])
        rotated_landmarks = np.c_[rotated_landmarks, landmarks[:, 2]]
        #  invert rotation
        rotation_component = np.array([
            [rotation_matrix[0][0], rotation_matrix[1][0]],
            [rotation_matrix[0][1], rotation_matrix[1][1]]])
        translation_component = np.array([
            rotation_matrix[0][2], rotation_matrix[1][2]])
        inverted_translation = np.array([
            -np.dot(rotation_component[0], translation_component),
            -np.dot(rotation_component[1], translation_component)])
        inverse_rotation_matrix = np.c_[rotation_component, inverted_translation]
        #  get box center
        center = np.append(np.sum(rotated_palm_bbox, axis=0) / 2, 1)
        original_center = np.array([
            np.dot(center, inverse_rotation_matrix[0]),
            np.dot(center, inverse_rotation_matrix[1])])
        landmarks = rotated_landmarks[:, :2] + original_center

        # get bounding box from rotated_landmarks
        bbox = np.array([
            np.amin(landmarks, axis=0),
            np.amax(landmarks, axis=0)])  # [top-left, bottom-right]
        # shift bounding box
        wh_bbox = bbox[1] - bbox[0]
        shift_vector = self.HAND_BOX_SHIFT_VECTOR * wh_bbox
        bbox = bbox + shift_vector
        # enlarge bounding box
        center_bbox = np.sum(bbox, axis=0) / 2
        wh_bbox = bbox[1] - bbox[0]
        new_half_size = wh_bbox * self.HAND_BOX_ENLARGE_FACTOR / 2
        bbox = np.array([
            center_bbox - new_half_size,
            center_bbox + new_half_size])

        return np.r_[bbox.reshape(-1), landmarks.reshape(-1), conf[0]]