Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
- demo.py +36 -30
- mp_handpose.py +3 -6
demo.py
CHANGED
@@ -9,34 +9,38 @@ from mp_handpose import MPHandPose
|
|
9 |
sys.path.append('../palm_detection_mediapipe')
|
10 |
from mp_palmdet import MPPalmDet
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
try:
|
25 |
-
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
26 |
-
targets += [cv.dnn.DNN_TARGET_NPU]
|
27 |
-
help_msg_backends += "; {:d}: TIMVX"
|
28 |
-
help_msg_targets += "; {:d}: NPU"
|
29 |
-
except:
|
30 |
-
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
|
31 |
|
32 |
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
|
33 |
-
parser.add_argument('--input', '-i', type=str,
|
34 |
-
|
35 |
-
parser.add_argument('--
|
36 |
-
|
37 |
-
parser.add_argument('--
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
args = parser.parse_args()
|
41 |
|
42 |
|
@@ -147,17 +151,19 @@ def visualize(image, hands, print_result=False):
|
|
147 |
|
148 |
|
149 |
if __name__ == '__main__':
|
|
|
|
|
150 |
# palm detector
|
151 |
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
|
152 |
nmsThreshold=0.3,
|
153 |
scoreThreshold=0.6,
|
154 |
-
backendId=
|
155 |
-
targetId=
|
156 |
# handpose detector
|
157 |
handpose_detector = MPHandPose(modelPath=args.model,
|
158 |
confThreshold=args.conf_threshold,
|
159 |
-
backendId=
|
160 |
-
targetId=
|
161 |
|
162 |
# If input is an image
|
163 |
if args.input is not None:
|
|
|
9 |
sys.path.append('../palm_detection_mediapipe')
|
10 |
from mp_palmdet import MPPalmDet
|
11 |
|
12 |
+
# Check OpenCV version
|
13 |
+
assert cv.__version__ >= "4.7.0", \
|
14 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
15 |
+
|
16 |
+
# Valid combinations of backends and targets
|
17 |
+
backend_target_pairs = [
|
18 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
19 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
20 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
21 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
22 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
23 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
|
26 |
+
parser.add_argument('--input', '-i', type=str,
|
27 |
+
help='Path to the input image. Omit for using default camera.')
|
28 |
+
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2023feb.onnx',
|
29 |
+
help='Path to the model.')
|
30 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
31 |
+
help='''Choose one of the backend-target pair to run this demo:
|
32 |
+
{:d}: (default) OpenCV implementation + CPU,
|
33 |
+
{:d}: CUDA + GPU (CUDA),
|
34 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
35 |
+
{:d}: TIM-VX + NPU,
|
36 |
+
{:d}: CANN + NPU
|
37 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
38 |
+
parser.add_argument('--conf_threshold', type=float, default=0.9,
|
39 |
+
help='Filter out hands of confidence < conf_threshold.')
|
40 |
+
parser.add_argument('--save', '-s', action='store_true',
|
41 |
+
help='Specify to save results. This flag is invalid when using camera.')
|
42 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
43 |
+
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
|
44 |
args = parser.parse_args()
|
45 |
|
46 |
|
|
|
151 |
|
152 |
|
153 |
if __name__ == '__main__':
|
154 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
155 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
156 |
# palm detector
|
157 |
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
|
158 |
nmsThreshold=0.3,
|
159 |
scoreThreshold=0.6,
|
160 |
+
backendId=backend_id,
|
161 |
+
targetId=target_id)
|
162 |
# handpose detector
|
163 |
handpose_detector = MPHandPose(modelPath=args.model,
|
164 |
confThreshold=args.conf_threshold,
|
165 |
+
backendId=backend_id,
|
166 |
+
targetId=target_id)
|
167 |
|
168 |
# If input is an image
|
169 |
if args.input is not None:
|
mp_handpose.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import numpy as np
|
2 |
import cv2 as cv
|
3 |
|
4 |
-
|
5 |
class MPHandPose:
|
6 |
def __init__(self, modelPath, confThreshold=0.8, backendId=0, targetId=0):
|
7 |
self.model_path = modelPath
|
@@ -28,12 +27,10 @@ class MPHandPose:
|
|
28 |
def name(self):
|
29 |
return self.__class__.__name__
|
30 |
|
31 |
-
def
|
32 |
-
self.
|
|
|
33 |
self.model.setPreferableBackend(self.backend_id)
|
34 |
-
|
35 |
-
def setTarget(self, targetId):
|
36 |
-
self.target_id = targetId
|
37 |
self.model.setPreferableTarget(self.target_id)
|
38 |
|
39 |
def _cropAndPadFromPalm(self, image, palm_bbox, for_rotation = False):
|
|
|
1 |
import numpy as np
|
2 |
import cv2 as cv
|
3 |
|
|
|
4 |
class MPHandPose:
|
5 |
def __init__(self, modelPath, confThreshold=0.8, backendId=0, targetId=0):
|
6 |
self.model_path = modelPath
|
|
|
27 |
def name(self):
|
28 |
return self.__class__.__name__
|
29 |
|
30 |
+
def setBackendAndTarget(self, backendId, targetId):
|
31 |
+
self._backendId = backendId
|
32 |
+
self._targetId = targetId
|
33 |
self.model.setPreferableBackend(self.backend_id)
|
|
|
|
|
|
|
34 |
self.model.setPreferableTarget(self.target_id)
|
35 |
|
36 |
def _cropAndPadFromPalm(self, image, palm_bbox, for_rotation = False):
|