ONNX
ytfeng commited on
Commit
e65ea83
·
1 Parent(s): c91d001

Limit combinations of backends and targets in demos and benchmark (#145)

Browse files

* limit backend and target combination in demos and benchmark

* simpler version checking

Files changed (2) hide show
  1. demo.py +27 -24
  2. ppresnet.py +3 -5
demo.py CHANGED
@@ -11,36 +11,39 @@ import cv2 as cv
11
 
12
  from ppresnet import PPResNet
13
 
14
- def str2bool(v):
15
- if v.lower() in ['on', 'yes', 'true', 'y', 't']:
16
- return True
17
- elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
18
- return False
19
- else:
20
- raise NotImplementedError
21
-
22
- backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
23
- targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
24
- help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
25
- help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
26
- try:
27
- backends += [cv.dnn.DNN_BACKEND_TIMVX]
28
- targets += [cv.dnn.DNN_TARGET_NPU]
29
- help_msg_backends += "; {:d}: TIMVX"
30
- help_msg_targets += "; {:d}: NPU"
31
- except:
32
- print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
33
 
34
  parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)')
35
- parser.add_argument('--input', '-i', type=str, help='Usage: Set input path to a certain image, omit if using camera.')
36
- parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2022jan.onnx', help='Usage: Set model path, defaults to image_classification_ppresnet50_2022jan.onnx.')
37
- parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
38
- parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
 
 
 
 
 
 
 
 
39
  args = parser.parse_args()
40
 
41
  if __name__ == '__main__':
 
 
42
  # Instantiate ResNet
43
- model = PPResNet(modelPath=args.model, backendId=args.backend, targetId=args.target)
44
 
45
  # Read image and get a 224x224 crop from a 256x256 resized
46
  image = cv.imread(args.input)
 
11
 
12
  from ppresnet import PPResNet
13
 
14
+ # Check OpenCV version
15
+ assert cv.__version__ >= "4.7.0", \
16
+ "Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
17
+
18
+ # Valid combinations of backends and targets
19
+ backend_target_pairs = [
20
+ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
21
+ [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
22
+ [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
23
+ [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
24
+ [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
25
+ ]
 
 
 
 
 
 
 
26
 
27
  parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)')
28
+ parser.add_argument('--input', '-i', type=str,
29
+ help='Usage: Set input path to a certain image, omit if using camera.')
30
+ parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2022jan.onnx',
31
+ help='Usage: Set model path, defaults to image_classification_ppresnet50_2022jan.onnx.')
32
+ parser.add_argument('--backend_target', '-bt', type=int, default=0,
33
+ help='''Choose one of the backend-target pair to run this demo:
34
+ {:d}: (default) OpenCV implementation + CPU,
35
+ {:d}: CUDA + GPU (CUDA),
36
+ {:d}: CUDA + GPU (CUDA FP16),
37
+ {:d}: TIM-VX + NPU,
38
+ {:d}: CANN + NPU
39
+ '''.format(*[x for x in range(len(backend_target_pairs))]))
40
  args = parser.parse_args()
41
 
42
  if __name__ == '__main__':
43
+ backend_id = backend_target_pairs[args.backend_target][0]
44
+ target_id = backend_target_pairs[args.backend_target][1]
45
  # Instantiate ResNet
46
+ model = PPResNet(modelPath=args.model, backendId=backend_id, targetId=target_id)
47
 
48
  # Read image and get a 224x224 crop from a 256x256 resized
49
  image = cv.imread(args.input)
ppresnet.py CHANGED
@@ -36,12 +36,10 @@ class PPResNet:
36
  def name(self):
37
  return self.__class__.__name__
38
 
39
- def setBackend(self, backend_id):
40
- self._backendId = backend_id
 
41
  self._model.setPreferableBackend(self._backendId)
42
-
43
- def setTarget(self, target_id):
44
- self._targetId = target_id
45
  self._model.setPreferableTarget(self._targetId)
46
 
47
  def _preprocess(self, image):
 
36
  def name(self):
37
  return self.__class__.__name__
38
 
39
+ def setBackendAndTarget(self, backendId, targetId):
40
+ self._backendId = backendId
41
+ self._targetId = targetId
42
  self._model.setPreferableBackend(self._backendId)
 
 
 
43
  self._model.setPreferableTarget(self._targetId)
44
 
45
  def _preprocess(self, image):