Add multi-points input, foreground/background points input and box input to EfficientSAM model (#291)
Browse files* a
* add efficientsam model and basic demo
* update license
* remove example images
* update readme
* update readme
* update demo
* update demo
* update readme
* update SAM and __init__
* update demo and sam
* update label
* add present gif
* update readme
* add efficientSAM gif to readme of opencvzoo
* cv version 4.10.0, remove camera branch
* 1. add multipoints infering(max: 6)
2. add box prompt(drag), add background point(long press)
3. model fix to 1024*1024
4. label padding -1
5. update demo
* replace the model by new model support mutil-points input, update demo
* update readme
* update readme
* change window size to (800*600), pictures be put in can not exceed it
* add int8 model
* update demo
* update README
* check OpenCV version
* update model name in demo
* update model name in demo
* Add a key to exit ('q' and 'Q'); When clicks reach maximum, no box shows; comment useless print, delete useless whitespace
* update demo with some ASCII
- README.md +13 -5
- demo.py +152 -42
- efficientSAM.py +91 -28
@@ -3,9 +3,16 @@
|
|
3 |
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything
|
4 |
|
5 |
Notes:
|
6 |
-
- The current implementation of the EfficientSAM demo uses the EfficientSAM-Ti model, which is specifically tailored for scenarios requiring higher speed and lightweight.
|
7 |
-
-
|
8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
## Demo
|
@@ -17,7 +24,7 @@ Run the following command to try the demo:
|
|
17 |
python demo.py --input /path/to/image
|
18 |
```
|
19 |
|
20 |
-
Click
|
21 |
|
22 |
## Result
|
23 |
|
@@ -41,4 +48,5 @@ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
|
41 |
## Reference
|
42 |
|
43 |
- https://arxiv.org/abs/2312.00863
|
44 |
-
- https://github.com/yformer/EfficientSAM
|
|
|
|
3 |
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything
|
4 |
|
5 |
Notes:
|
6 |
+
- The current implementation of the EfficientSAM demo uses the EfficientSAM-Ti model, which is specifically tailored for scenarios requiring higher speed and lightweight.
|
7 |
+
- image_segmentation_efficientsam_ti_2024may.onnx(supports only single point infering)
|
8 |
+
- MD5 value: 117d6a6cac60039a20b399cc133c2a60
|
9 |
+
- SHA-256 value: e3957d2cd1422855f350aa7b044f47f5b3eafada64b5904ed330b696229e2943
|
10 |
+
- image_segmentation_efficientsam_ti_2025april.onnx
|
11 |
+
- MD5 value: f23cecbb344547c960c933ff454536a3
|
12 |
+
- SHA-256 value: 4eb496e0a7259d435b49b66faf1754aa45a5c382a34558ddda9a8c6fe5915d77
|
13 |
+
- image_segmentation_efficientsam_ti_2025april_int8.onnx
|
14 |
+
- MD5 value: a1164f44b0495b82e9807c7256e95a50
|
15 |
+
- SHA-256 value: 5ecc8d59a2802c32246e68553e1cf8ce74cf74ba707b84f206eb9181ff774b4e
|
16 |
|
17 |
|
18 |
## Demo
|
|
|
24 |
python demo.py --input /path/to/image
|
25 |
```
|
26 |
|
27 |
+
**Click** to select foreground points, **drag** to use box to select and **long press** to select background points on the object you wish to segment in the displayed image. After clicking the **Enter**, the segmentation result will be shown in a new window. Clicking the **Backspace** to clear all the prompts.
|
28 |
|
29 |
## Result
|
30 |
|
|
|
48 |
## Reference
|
49 |
|
50 |
- https://arxiv.org/abs/2312.00863
|
51 |
+
- https://github.com/yformer/EfficientSAM
|
52 |
+
- https://github.com/facebookresearch/segment-anything
|
@@ -20,8 +20,8 @@ backend_target_pairs = [
|
|
20 |
parser = argparse.ArgumentParser(description='EfficientSAM Demo')
|
21 |
parser.add_argument('--input', '-i', type=str,
|
22 |
help='Set input path to a certain image.')
|
23 |
-
parser.add_argument('--model', '-m', type=str, default='
|
24 |
-
help='Set model path, defaults to
|
25 |
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
26 |
help='''Choose one of the backend-target pair to run this demo:
|
27 |
{:d}: (default) OpenCV implementation + CPU,
|
@@ -34,10 +34,14 @@ parser.add_argument('--save', '-s', action='store_true',
|
|
34 |
help='Specify to save a file with results. Invalid in case of camera input.')
|
35 |
args = parser.parse_args()
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def visualize(image, result):
|
43 |
"""
|
@@ -55,26 +59,88 @@ def visualize(image, result):
|
|
55 |
mask = np.copy(result)
|
56 |
# change mask to binary image
|
57 |
t, binary = cv.threshold(mask, 127, 255, cv.THRESH_BINARY)
|
58 |
-
assert set(np.unique(binary)) <= {0, 255}, "The mask must be a binary image"
|
59 |
# enhance red channel to make the segmentation more obviously
|
60 |
enhancement_factor = 1.8
|
61 |
-
red_channel = vis_result[:, :, 2]
|
62 |
# update the channel
|
63 |
red_channel = np.where(binary == 255, np.minimum(red_channel * enhancement_factor, 255), red_channel)
|
64 |
-
vis_result[:, :, 2] = red_channel
|
65 |
-
|
66 |
# draw borders
|
67 |
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_TC89_L1)
|
68 |
cv.drawContours(vis_result, contours, contourIdx = -1, color = (255,255,255), thickness=2)
|
69 |
return vis_result
|
70 |
|
71 |
def select(event, x, y, flags, param):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
if __name__ == '__main__':
|
80 |
backend_id = backend_target_pairs[args.backend_target][0]
|
@@ -89,49 +155,93 @@ if __name__ == '__main__':
|
|
89 |
print('Could not open or find the image:', args.input)
|
90 |
exit(0)
|
91 |
# create window
|
92 |
-
image_window = "image
|
93 |
cv.namedWindow(image_window, cv.WINDOW_NORMAL)
|
94 |
# change window size
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# put the window on the left of the screen
|
97 |
cv.moveWindow(image_window, 50, 100)
|
98 |
# set listener to record user's click point
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
# tips in the terminal
|
101 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
102 |
# show image
|
103 |
cv.imshow(image_window, image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
# waiting for click
|
105 |
-
while
|
106 |
-
#
|
107 |
-
if
|
108 |
-
|
109 |
-
|
110 |
-
# get the visualized result
|
111 |
-
vis_result = visualize(image, result)
|
112 |
-
# create window to show visualized result
|
113 |
-
cv.namedWindow("vis_result", cv.WINDOW_NORMAL)
|
114 |
-
cv.resizeWindow("vis_result", 800 if vis_result.shape[0] > 800 else vis_result.shape[0], 600 if vis_result.shape[1] > 600 else vis_result.shape[1])
|
115 |
-
cv.moveWindow("vis_result", 851, 100)
|
116 |
-
cv.imshow("vis_result", vis_result)
|
117 |
-
# set click false to listen another click
|
118 |
-
clicked_left = False
|
119 |
-
elif cv.getWindowProperty(image_window, cv.WND_PROP_VISIBLE) < 1:
|
120 |
-
# if click × to close the image window then ending
|
121 |
break
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
cv.destroyAllWindows()
|
126 |
-
|
127 |
# Save results if save is true
|
128 |
if args.save:
|
129 |
cv.imwrite('./example_outputs/vis_result.jpg', vis_result)
|
130 |
cv.imwrite("./example_outputs/mask.jpg", result)
|
131 |
print('vis_result.jpg and mask.jpg are saved to ./example_outputs/')
|
132 |
|
133 |
-
|
134 |
else:
|
135 |
print('Set input path to a certain image.')
|
136 |
pass
|
137 |
-
|
|
|
20 |
parser = argparse.ArgumentParser(description='EfficientSAM Demo')
|
21 |
parser.add_argument('--input', '-i', type=str,
|
22 |
help='Set input path to a certain image.')
|
23 |
+
parser.add_argument('--model', '-m', type=str, default='image_segmentation_efficientsam_ti_2025april.onnx',
|
24 |
+
help='Set model path, defaults to image_segmentation_efficientsam_ti_2025april.onnx.')
|
25 |
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
26 |
help='''Choose one of the backend-target pair to run this demo:
|
27 |
{:d}: (default) OpenCV implementation + CPU,
|
|
|
34 |
help='Specify to save a file with results. Invalid in case of camera input.')
|
35 |
args = parser.parse_args()
|
36 |
|
37 |
+
# Global configuration
|
38 |
+
WINDOW_SIZE = (800, 600) # Fixed window size (width, height)
|
39 |
+
MAX_POINTS = 6 # Maximum allowed points
|
40 |
+
points = [] # Store clicked coordinates (original image scale)
|
41 |
+
labels = [] # Point labels (-1: useless, 0: background, 1: foreground, 2: top-left, 3: bottom right)
|
42 |
+
backend_point = []
|
43 |
+
rectangle = False
|
44 |
+
current_img = None
|
45 |
|
46 |
def visualize(image, result):
|
47 |
"""
|
|
|
59 |
mask = np.copy(result)
|
60 |
# change mask to binary image
|
61 |
t, binary = cv.threshold(mask, 127, 255, cv.THRESH_BINARY)
|
62 |
+
assert set(np.unique(binary)) <= {0, 255}, "The mask must be a binary image."
|
63 |
# enhance red channel to make the segmentation more obviously
|
64 |
enhancement_factor = 1.8
|
65 |
+
red_channel = vis_result[:, :, 2]
|
66 |
# update the channel
|
67 |
red_channel = np.where(binary == 255, np.minimum(red_channel * enhancement_factor, 255), red_channel)
|
68 |
+
vis_result[:, :, 2] = red_channel
|
69 |
+
|
70 |
# draw borders
|
71 |
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_TC89_L1)
|
72 |
cv.drawContours(vis_result, contours, contourIdx = -1, color = (255,255,255), thickness=2)
|
73 |
return vis_result
|
74 |
|
75 |
def select(event, x, y, flags, param):
|
76 |
+
"""Handle mouse events with coordinate conversion"""
|
77 |
+
global points, labels, backend_point, rectangle, current_img
|
78 |
+
orig_img = param['original_img']
|
79 |
+
image_window = param['image_window']
|
80 |
+
|
81 |
+
if event == cv.EVENT_LBUTTONDOWN:
|
82 |
+
param['mouse_down_time'] = cv.getTickCount()
|
83 |
+
backend_point = [x, y]
|
84 |
+
|
85 |
+
elif event == cv.EVENT_MOUSEMOVE:
|
86 |
+
if rectangle == True:
|
87 |
+
rectangle_change_img = current_img.copy()
|
88 |
+
cv.rectangle(rectangle_change_img, (backend_point[0], backend_point[1]), (x, y), (255,0,0) , 2)
|
89 |
+
cv.imshow(image_window, rectangle_change_img)
|
90 |
+
elif len(backend_point) != 0 and len(points) < MAX_POINTS:
|
91 |
+
rectangle = True
|
92 |
+
|
93 |
+
|
94 |
+
elif event == cv.EVENT_LBUTTONUP:
|
95 |
+
if len(points) >= MAX_POINTS:
|
96 |
+
print(f"Maximum points reached {MAX_POINTS}.")
|
97 |
+
return
|
98 |
+
|
99 |
+
if rectangle == False:
|
100 |
+
duration = (cv.getTickCount() - param['mouse_down_time'])/cv.getTickFrequency()
|
101 |
+
label = -1 if duration > 0.5 else 1 # Long press = background
|
102 |
+
|
103 |
+
points.append([backend_point[0], backend_point[1]])
|
104 |
+
labels.append(label)
|
105 |
+
print(f"Added {['background','foreground','background'][label]} point {backend_point}.")
|
106 |
+
else:
|
107 |
+
if len(points) + 1 >= MAX_POINTS:
|
108 |
+
rectangle = False
|
109 |
+
backend_point.clear()
|
110 |
+
cv.imshow(image_window, current_img)
|
111 |
+
print(f"Points reached {MAX_POINTS}, could not add box.")
|
112 |
+
return
|
113 |
+
point_leftup = []
|
114 |
+
point_rightdown = []
|
115 |
+
if x > backend_point[0] or y > backend_point[1]:
|
116 |
+
point_leftup.extend(backend_point)
|
117 |
+
point_rightdown.extend([x,y])
|
118 |
+
else:
|
119 |
+
point_leftup.extend([x,y])
|
120 |
+
point_rightdown.extend(backend_point)
|
121 |
+
points.append(point_leftup)
|
122 |
+
points.append(point_rightdown)
|
123 |
+
print(f"Added box from {point_leftup} to {point_rightdown}.")
|
124 |
+
labels.append(2)
|
125 |
+
labels.append(3)
|
126 |
+
rectangle = False
|
127 |
+
backend_point.clear()
|
128 |
+
|
129 |
+
marked_img = orig_img.copy()
|
130 |
+
top_left = None
|
131 |
+
for (px, py), lbl in zip(points, labels):
|
132 |
+
if lbl == -1:
|
133 |
+
cv.circle(marked_img, (px, py), 5, (0, 0, 255), -1)
|
134 |
+
elif lbl == 1:
|
135 |
+
cv.circle(marked_img, (px, py), 5, (0, 255, 0), -1)
|
136 |
+
elif lbl == 2:
|
137 |
+
top_left = (px, py)
|
138 |
+
elif lbl == 3:
|
139 |
+
bottom_right = (px, py)
|
140 |
+
cv.rectangle(marked_img, top_left, bottom_right, (255,0,0) , 2)
|
141 |
+
cv.imshow(image_window, marked_img)
|
142 |
+
current_img = marked_img.copy()
|
143 |
+
|
144 |
|
145 |
if __name__ == '__main__':
|
146 |
backend_id = backend_target_pairs[args.backend_target][0]
|
|
|
155 |
print('Could not open or find the image:', args.input)
|
156 |
exit(0)
|
157 |
# create window
|
158 |
+
image_window = "Origin image"
|
159 |
cv.namedWindow(image_window, cv.WINDOW_NORMAL)
|
160 |
# change window size
|
161 |
+
rate = 1
|
162 |
+
rate1 = 1
|
163 |
+
rate2 = 1
|
164 |
+
if(image.shape[1]>WINDOW_SIZE[0]):
|
165 |
+
rate1 = WINDOW_SIZE[0]/image.shape[1]
|
166 |
+
if(image.shape[0]>WINDOW_SIZE[1]):
|
167 |
+
rate2 = WINDOW_SIZE[1]/image.shape[0]
|
168 |
+
rate = min(rate1, rate2)
|
169 |
+
# width, height
|
170 |
+
WINDOW_SIZE = (int(image.shape[1] * rate), int(image.shape[0] * rate))
|
171 |
+
cv.resizeWindow(image_window, WINDOW_SIZE[0], WINDOW_SIZE[1])
|
172 |
# put the window on the left of the screen
|
173 |
cv.moveWindow(image_window, 50, 100)
|
174 |
# set listener to record user's click point
|
175 |
+
param = {
|
176 |
+
'original_img': image,
|
177 |
+
'mouse_down_time': 0,
|
178 |
+
'image_window' : image_window
|
179 |
+
}
|
180 |
+
cv.setMouseCallback(image_window, select, param)
|
181 |
# tips in the terminal
|
182 |
+
print("Click — Select foreground point\n"
|
183 |
+
"Long press — Select background point\n"
|
184 |
+
"Drag — Create selection box\n"
|
185 |
+
"Enter — Infer\n"
|
186 |
+
"Backspace — Clear the prompts\n"
|
187 |
+
"Q - Quit")
|
188 |
# show image
|
189 |
cv.imshow(image_window, image)
|
190 |
+
current_img = image.copy()
|
191 |
+
# create window to show visualized result
|
192 |
+
vis_image = image.copy()
|
193 |
+
segmentation_window = "Segment result"
|
194 |
+
cv.namedWindow(segmentation_window, cv.WINDOW_NORMAL)
|
195 |
+
cv.resizeWindow(segmentation_window, WINDOW_SIZE[0], WINDOW_SIZE[1])
|
196 |
+
cv.moveWindow(segmentation_window, WINDOW_SIZE[0]+51, 100)
|
197 |
+
cv.imshow(segmentation_window, vis_image)
|
198 |
# waiting for click
|
199 |
+
while True:
|
200 |
+
# Check window status
|
201 |
+
# if click × to close the image window then ending
|
202 |
+
if (cv.getWindowProperty(image_window, cv.WND_PROP_VISIBLE) < 1 or
|
203 |
+
cv.getWindowProperty(segmentation_window, cv.WND_PROP_VISIBLE) < 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
break
|
205 |
+
|
206 |
+
# Handle keyboard input
|
207 |
+
key = cv.waitKey(1)
|
208 |
+
|
209 |
+
# receive enter
|
210 |
+
if key == 13:
|
211 |
+
|
212 |
+
vis_image = image.copy()
|
213 |
+
cv.putText(vis_image, "infering...",
|
214 |
+
(50, vis_image.shape[0]//2),
|
215 |
+
cv.FONT_HERSHEY_SIMPLEX, 10, (255,255,255), 5)
|
216 |
+
cv.imshow(segmentation_window, vis_image)
|
217 |
+
|
218 |
+
result = model.infer(image=image, points=points, labels=labels)
|
219 |
+
if len(result) == 0:
|
220 |
+
print("clear and select points again!")
|
221 |
+
else:
|
222 |
+
vis_result = visualize(image, result)
|
223 |
+
|
224 |
+
cv.imshow(segmentation_window, vis_result)
|
225 |
+
elif key == 8 or key == 127: # ASCII for Backspace or Delete
|
226 |
+
points.clear()
|
227 |
+
labels.clear()
|
228 |
+
backend_point = []
|
229 |
+
rectangle = False
|
230 |
+
current_img = image
|
231 |
+
print("Points are cleared.")
|
232 |
+
cv.imshow(image_window, image)
|
233 |
+
elif key == ord('q') or key == ord('Q'):
|
234 |
+
break
|
235 |
+
|
236 |
cv.destroyAllWindows()
|
237 |
+
|
238 |
# Save results if save is true
|
239 |
if args.save:
|
240 |
cv.imwrite('./example_outputs/vis_result.jpg', vis_result)
|
241 |
cv.imwrite("./example_outputs/mask.jpg", result)
|
242 |
print('vis_result.jpg and mask.jpg are saved to ./example_outputs/')
|
243 |
|
|
|
244 |
else:
|
245 |
print('Set input path to a certain image.')
|
246 |
pass
|
247 |
+
|
@@ -11,11 +11,15 @@ class EfficientSAM:
|
|
11 |
self._model.setPreferableBackend(self._backendId)
|
12 |
self._model.setPreferableTarget(self._targetId)
|
13 |
# 3 inputs
|
14 |
-
self._inputNames = ["batched_images", "batched_point_coords", "batched_point_labels"]
|
15 |
-
|
16 |
-
self._outputNames = ['output_masks'] # actual output layer name
|
17 |
self._currentInputSize = None
|
18 |
-
self._inputSize = [
|
|
|
|
|
|
|
|
|
19 |
|
20 |
@property
|
21 |
def name(self):
|
@@ -28,26 +32,54 @@ class EfficientSAM:
|
|
28 |
self._model.setPreferableTarget(self._targetId)
|
29 |
|
30 |
def _preprocess(self, image, points, labels):
|
31 |
-
|
32 |
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
33 |
# record the input image size, (width, height)
|
34 |
self._currentInputSize = (image.shape[1], image.shape[0])
|
35 |
-
|
36 |
image = cv.resize(image, self._inputSize)
|
37 |
-
|
38 |
image = image.astype(np.float32, copy=False) / 255.0
|
39 |
-
|
40 |
-
# convert points to (640*640) size space
|
41 |
-
for p in points:
|
42 |
-
p[0] = int(p[0] * self._inputSize[0]/self._currentInputSize[0])
|
43 |
-
p[1] = int(p[1]* self._inputSize[1]/self._currentInputSize[1])
|
44 |
-
|
45 |
image_blob = cv.dnn.blobFromImage(image)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
return image_blob, points_blob, labels_blob
|
52 |
|
53 |
def infer(self, image, points, labels):
|
@@ -57,17 +89,48 @@ class EfficientSAM:
|
|
57 |
self._model.setInput(imageBlob, self._inputNames[0])
|
58 |
self._model.setInput(pointsBlob, self._inputNames[1])
|
59 |
self._model.setInput(labelsBlob, self._inputNames[2])
|
60 |
-
|
|
|
|
|
61 |
# Postprocess
|
62 |
-
results = self._postprocess(outputBlob)
|
63 |
-
|
64 |
return results
|
65 |
|
66 |
-
def _postprocess(self, outputBlob):
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# change to real image size
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
self._model.setPreferableBackend(self._backendId)
|
12 |
self._model.setPreferableTarget(self._targetId)
|
13 |
# 3 inputs
|
14 |
+
self._inputNames = ["batched_images", "batched_point_coords", "batched_point_labels"]
|
15 |
+
|
16 |
+
self._outputNames = ['output_masks', 'iou_predictions'] # actual output layer name
|
17 |
self._currentInputSize = None
|
18 |
+
self._inputSize = [1024, 1024] # input size for the model
|
19 |
+
self._maxPointNums = 6
|
20 |
+
self._frontGroundPoints = []
|
21 |
+
self._backGroundPoints = []
|
22 |
+
self._labels = []
|
23 |
|
24 |
@property
|
25 |
def name(self):
|
|
|
32 |
self._model.setPreferableTarget(self._targetId)
|
33 |
|
34 |
def _preprocess(self, image, points, labels):
|
35 |
+
|
36 |
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
37 |
# record the input image size, (width, height)
|
38 |
self._currentInputSize = (image.shape[1], image.shape[0])
|
39 |
+
|
40 |
image = cv.resize(image, self._inputSize)
|
41 |
+
|
42 |
image = image.astype(np.float32, copy=False) / 255.0
|
43 |
+
|
|
|
|
|
|
|
|
|
|
|
44 |
image_blob = cv.dnn.blobFromImage(image)
|
45 |
+
|
46 |
+
points = np.array(points, dtype=np.float32)
|
47 |
+
labels = np.array(labels, dtype=np.float32)
|
48 |
+
assert points.shape[0] <= self._maxPointNums, f"Max input points number: {self._maxPointNums}"
|
49 |
+
assert points.shape[0] == labels.shape[0]
|
50 |
+
|
51 |
+
frontGroundPoints = []
|
52 |
+
backGroundPoints = []
|
53 |
+
inputLabels = []
|
54 |
+
for i in range(len(points)):
|
55 |
+
if labels[i] == -1:
|
56 |
+
backGroundPoints.append(points[i])
|
57 |
+
else:
|
58 |
+
frontGroundPoints.append(points[i])
|
59 |
+
inputLabels.append(labels[i])
|
60 |
+
self._backGroundPoints = np.uint32(backGroundPoints)
|
61 |
+
# print("input:")
|
62 |
+
# print(" back: ", self._backGroundPoints)
|
63 |
+
# print(" front: ", frontGroundPoints)
|
64 |
+
# print(" label: ", inputLabels)
|
65 |
+
|
66 |
+
# convert points to (1024*1024) size space
|
67 |
+
for p in frontGroundPoints:
|
68 |
+
p[0] = np.float32(p[0] * self._inputSize[0]/self._currentInputSize[0])
|
69 |
+
p[1] = np.float32(p[1] * self._inputSize[1]/self._currentInputSize[1])
|
70 |
+
|
71 |
+
if len(frontGroundPoints) > self._maxPointNums:
|
72 |
+
return "no"
|
73 |
+
|
74 |
+
pad_num = self._maxPointNums - len(frontGroundPoints)
|
75 |
+
self._frontGroundPoints = np.vstack([frontGroundPoints, np.zeros((pad_num, 2), dtype=np.float32)])
|
76 |
+
inputLabels_arr = np.array(inputLabels, dtype=np.float32).reshape(-1, 1)
|
77 |
+
self._labels = np.vstack([inputLabels_arr, np.full((pad_num, 1), -1, dtype=np.float32)])
|
78 |
+
|
79 |
+
points_blob = np.array([[self._frontGroundPoints]])
|
80 |
+
|
81 |
+
labels_blob = np.array([[self._labels]])
|
82 |
+
|
83 |
return image_blob, points_blob, labels_blob
|
84 |
|
85 |
def infer(self, image, points, labels):
|
|
|
89 |
self._model.setInput(imageBlob, self._inputNames[0])
|
90 |
self._model.setInput(pointsBlob, self._inputNames[1])
|
91 |
self._model.setInput(labelsBlob, self._inputNames[2])
|
92 |
+
# print("infering...")
|
93 |
+
outputs = self._model.forward(self._outputNames)
|
94 |
+
outputBlob, outputIou = outputs[0], outputs[1]
|
95 |
# Postprocess
|
96 |
+
results = self._postprocess(outputBlob, outputIou)
|
97 |
+
# print("done")
|
98 |
return results
|
99 |
|
100 |
+
def _postprocess(self, outputBlob, outputIou):
|
101 |
+
# The masks are already sorted by their predicted IOUs.
|
102 |
+
# The first dimension is the batch size (we have a single image. so it is 1).
|
103 |
+
# The second dimension is the number of masks we want to generate
|
104 |
+
# The third dimension is the number of candidate masks output by the model.
|
105 |
+
masks = outputBlob[0, 0, :, :, :] >= 0
|
106 |
+
ious = outputIou[0, 0, :]
|
107 |
+
|
108 |
+
# sorted by ious
|
109 |
+
sorted_indices = np.argsort(ious)[::-1]
|
110 |
+
sorted_masks = masks[sorted_indices]
|
111 |
+
|
112 |
+
# sorted by area
|
113 |
+
# mask_areas = np.sum(masks, axis=(1, 2))
|
114 |
+
# sorted_indices = np.argsort(mask_areas)
|
115 |
+
# sorted_masks = masks[sorted_indices]
|
116 |
+
|
117 |
+
masks_uint8 = (sorted_masks * 255).astype(np.uint8)
|
118 |
+
|
119 |
# change to real image size
|
120 |
+
resized_masks = [
|
121 |
+
cv.resize(mask, dsize=self._currentInputSize,
|
122 |
+
interpolation=cv.INTER_NEAREST)
|
123 |
+
for mask in masks_uint8
|
124 |
+
]
|
125 |
+
|
126 |
+
# background mask don't need
|
127 |
+
for mask in resized_masks:
|
128 |
+
contains_bg = any(
|
129 |
+
mask[y, x] if (0 <= x < mask.shape[1] and 0 <= y < mask.shape[0])
|
130 |
+
else False
|
131 |
+
for (x, y) in self._backGroundPoints
|
132 |
+
)
|
133 |
+
if not contains_bg:
|
134 |
+
return mask
|
135 |
+
|
136 |
+
return resized_masks[0]
|