Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
- demo.py +41 -32
- lpd_yunet.py +2 -4
demo.py
CHANGED
@@ -5,37 +5,44 @@ import cv2 as cv
|
|
5 |
|
6 |
from lpd_yunet import LPD_YuNet
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
try:
|
21 |
-
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
22 |
-
targets += [cv.dnn.DNN_TARGET_NPU]
|
23 |
-
help_msg_backends += "; {:d}: TIMVX"
|
24 |
-
help_msg_targets += "; {:d}: NPU"
|
25 |
-
except:
|
26 |
-
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
|
27 |
|
28 |
parser = argparse.ArgumentParser(description='LPD-YuNet for License Plate Detection')
|
29 |
-
parser.add_argument('--input', '-i', type=str,
|
30 |
-
|
31 |
-
parser.add_argument('--
|
32 |
-
|
33 |
-
parser.add_argument('--
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
args = parser.parse_args()
|
40 |
|
41 |
def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
@@ -57,14 +64,17 @@ def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=N
|
|
57 |
return output
|
58 |
|
59 |
if __name__ == '__main__':
|
|
|
|
|
|
|
60 |
# Instantiate LPD-YuNet
|
61 |
model = LPD_YuNet(modelPath=args.model,
|
62 |
confThreshold=args.conf_threshold,
|
63 |
nmsThreshold=args.nms_threshold,
|
64 |
topK=args.top_k,
|
65 |
keepTopK=args.keep_top_k,
|
66 |
-
backendId=
|
67 |
-
targetId=
|
68 |
|
69 |
# If input is an image
|
70 |
if args.input is not None:
|
@@ -117,4 +127,3 @@ if __name__ == '__main__':
|
|
117 |
cv.imshow('LPD-YuNet Demo', frame)
|
118 |
|
119 |
tm.reset()
|
120 |
-
|
|
|
5 |
|
6 |
from lpd_yunet import LPD_YuNet
|
7 |
|
8 |
+
# Check OpenCV version
|
9 |
+
assert cv.__version__ >= "4.7.0", \
|
10 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
11 |
+
|
12 |
+
# Valid combinations of backends and targets
|
13 |
+
backend_target_pairs = [
|
14 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
15 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
16 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
17 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
18 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
19 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
parser = argparse.ArgumentParser(description='LPD-YuNet for License Plate Detection')
|
22 |
+
parser.add_argument('--input', '-i', type=str,
|
23 |
+
help='Usage: Set path to the input image. Omit for using default camera.')
|
24 |
+
parser.add_argument('--model', '-m', type=str, default='license_plate_detection_lpd_yunet_2023mar.onnx',
|
25 |
+
help='Usage: Set model path, defaults to license_plate_detection_lpd_yunet_2023mar.onnx.')
|
26 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
27 |
+
help='''Choose one of the backend-target pair to run this demo:
|
28 |
+
{:d}: (default) OpenCV implementation + CPU,
|
29 |
+
{:d}: CUDA + GPU (CUDA),
|
30 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
31 |
+
{:d}: TIM-VX + NPU,
|
32 |
+
{:d}: CANN + NPU
|
33 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
34 |
+
parser.add_argument('--conf_threshold', type=float, default=0.9,
|
35 |
+
help='Usage: Set the minimum needed confidence for the model to identify a license plate, defaults to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
|
36 |
+
parser.add_argument('--nms_threshold', type=float, default=0.3,
|
37 |
+
help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3. Suppress bounding boxes of iou >= nms_threshold.')
|
38 |
+
parser.add_argument('--top_k', type=int, default=5000,
|
39 |
+
help='Usage: Keep top_k bounding boxes before NMS.')
|
40 |
+
parser.add_argument('--keep_top_k', type=int, default=750,
|
41 |
+
help='Usage: Keep keep_top_k bounding boxes after NMS.')
|
42 |
+
parser.add_argument('--save', '-s', action='store_true',
|
43 |
+
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
|
44 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
45 |
+
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
46 |
args = parser.parse_args()
|
47 |
|
48 |
def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
|
|
64 |
return output
|
65 |
|
66 |
if __name__ == '__main__':
|
67 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
68 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
69 |
+
|
70 |
# Instantiate LPD-YuNet
|
71 |
model = LPD_YuNet(modelPath=args.model,
|
72 |
confThreshold=args.conf_threshold,
|
73 |
nmsThreshold=args.nms_threshold,
|
74 |
topK=args.top_k,
|
75 |
keepTopK=args.keep_top_k,
|
76 |
+
backendId=backend_id,
|
77 |
+
targetId=target_id)
|
78 |
|
79 |
# If input is an image
|
80 |
if args.input is not None:
|
|
|
127 |
cv.imshow('LPD-YuNet Demo', frame)
|
128 |
|
129 |
tm.reset()
|
|
lpd_yunet.py
CHANGED
@@ -28,12 +28,10 @@ class LPD_YuNet:
|
|
28 |
def name(self):
|
29 |
return self.__class__.__name__
|
30 |
|
31 |
-
def
|
32 |
self.backend_id = backendId
|
33 |
-
self.model.setPreferableBackend(self.backend_id)
|
34 |
-
|
35 |
-
def setTarget(self, targetId):
|
36 |
self.target_id = targetId
|
|
|
37 |
self.model.setPreferableTarget(self.target_id)
|
38 |
|
39 |
def setInputSize(self, inputSize):
|
|
|
28 |
def name(self):
|
29 |
return self.__class__.__name__
|
30 |
|
31 |
+
def setBackendAndTarget(self, backendId, targetId):
|
32 |
self.backend_id = backendId
|
|
|
|
|
|
|
33 |
self.target_id = targetId
|
34 |
+
self.model.setPreferableBackend(self.backend_id)
|
35 |
self.model.setPreferableTarget(self.target_id)
|
36 |
|
37 |
def setInputSize(self, inputSize):
|