Merge pull request #109 fengyuentau:fix_yolox_issues
Browse filesResolves #108:
- Renamed `YoloX.py` to `yolox.py` for import.
- Reimplemented batched-nms.
- Put anchor generation in the initialization stage to avoid re-generating in inference.
YoloX.py
CHANGED
@@ -17,6 +17,8 @@ class YoloX:
|
|
17 |
self.net.setPreferableBackend(self.backendId)
|
18 |
self.net.setPreferableTarget(self.targetId)
|
19 |
|
|
|
|
|
20 |
@property
|
21 |
def name(self):
|
22 |
return self.__class__.__name__
|
@@ -43,51 +45,45 @@ class YoloX:
|
|
43 |
return predictions
|
44 |
|
45 |
def postprocess(self, outputs):
|
46 |
-
|
47 |
-
expanded_strides = []
|
48 |
-
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
49 |
-
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
54 |
-
grids.append(grid)
|
55 |
-
shape = grid.shape[:2]
|
56 |
-
expanded_strides.append(np.full((*shape, 1), stride))
|
57 |
-
|
58 |
-
grids = np.concatenate(grids, 1)
|
59 |
-
expanded_strides = np.concatenate(expanded_strides, 1)
|
60 |
-
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
61 |
-
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
62 |
-
|
63 |
-
predictions = outputs[0]
|
64 |
-
|
65 |
-
boxes = predictions[:, :4]
|
66 |
-
scores = predictions[:, 4:5] * predictions[:, 5:]
|
67 |
|
|
|
|
|
68 |
boxes_xyxy = np.ones_like(boxes)
|
69 |
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
70 |
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
71 |
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
72 |
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
self.net.setPreferableBackend(self.backendId)
|
18 |
self.net.setPreferableTarget(self.targetId)
|
19 |
|
20 |
+
self.generateAnchors()
|
21 |
+
|
22 |
@property
|
23 |
def name(self):
|
24 |
return self.__class__.__name__
|
|
|
45 |
return predictions
|
46 |
|
47 |
def postprocess(self, outputs):
|
48 |
+
dets = outputs[0]
|
|
|
|
|
|
|
49 |
|
50 |
+
dets[:, :2] = (dets[:, :2] + self.grids) * self.expanded_strides
|
51 |
+
dets[:, 2:4] = np.exp(dets[:, 2:4]) * self.expanded_strides
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# get boxes
|
54 |
+
boxes = dets[:, :4]
|
55 |
boxes_xyxy = np.ones_like(boxes)
|
56 |
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
57 |
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
58 |
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
59 |
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
60 |
|
61 |
+
# get scores and class indices
|
62 |
+
scores = dets[:, 4:5] * dets[:, 5:]
|
63 |
+
max_scores = np.amax(scores, axis=1)
|
64 |
+
max_scores_idx = np.argmax(scores, axis=1)
|
65 |
+
|
66 |
+
# batched-nms, TODO: replace with cv2.dnn.NMSBoxesBatched when OpenCV 4.7.0 is released
|
67 |
+
max_coord = boxes_xyxy.max()
|
68 |
+
offsets = max_scores_idx * (max_coord + 1)
|
69 |
+
boxes_for_nms = boxes_xyxy + offsets[:, None]
|
70 |
+
keep = cv2.dnn.NMSBoxes(boxes_for_nms.tolist(), max_scores.tolist(), self.confThreshold, self.nmsThreshold)
|
71 |
+
|
72 |
+
candidates = np.concatenate([boxes_xyxy, max_scores[:, None], max_scores_idx[:, None]], axis=1)
|
73 |
+
return candidates[keep]
|
74 |
+
|
75 |
+
def generateAnchors(self):
|
76 |
+
self.grids = []
|
77 |
+
self.expanded_strides = []
|
78 |
+
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
79 |
+
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
80 |
+
|
81 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
|
82 |
+
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
|
83 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
84 |
+
self.grids.append(grid)
|
85 |
+
shape = grid.shape[:2]
|
86 |
+
self.expanded_strides.append(np.full((*shape, 1), stride))
|
87 |
+
|
88 |
+
self.grids = np.concatenate(self.grids, 1)
|
89 |
+
self.expanded_strides = np.concatenate(self.expanded_strides, 1)
|
yolox.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
class YoloX:
|
5 |
+
def __init__(self, modelPath, confThreshold=0.35, nmsThreshold=0.5, objThreshold=0.5, backendId=0, targetId=0):
|
6 |
+
self.num_classes = 80
|
7 |
+
self.net = cv2.dnn.readNet(modelPath)
|
8 |
+
self.input_size = (640, 640)
|
9 |
+
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3)
|
10 |
+
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3)
|
11 |
+
self.strides = [8, 16, 32]
|
12 |
+
self.confThreshold = confThreshold
|
13 |
+
self.nmsThreshold = nmsThreshold
|
14 |
+
self.objThreshold = objThreshold
|
15 |
+
self.backendId = backendId
|
16 |
+
self.targetId = targetId
|
17 |
+
self.net.setPreferableBackend(self.backendId)
|
18 |
+
self.net.setPreferableTarget(self.targetId)
|
19 |
+
|
20 |
+
self.generateAnchors()
|
21 |
+
|
22 |
+
@property
|
23 |
+
def name(self):
|
24 |
+
return self.__class__.__name__
|
25 |
+
|
26 |
+
def setBackend(self, backenId):
|
27 |
+
self.backendId = backendId
|
28 |
+
self.net.setPreferableBackend(self.backendId)
|
29 |
+
|
30 |
+
def setTarget(self, targetId):
|
31 |
+
self.targetId = targetId
|
32 |
+
self.net.setPreferableTarget(self.targetId)
|
33 |
+
|
34 |
+
def preprocess(self, img):
|
35 |
+
blob = np.transpose(img, (2, 0, 1))
|
36 |
+
return blob[np.newaxis, :, :, :]
|
37 |
+
|
38 |
+
def infer(self, srcimg):
|
39 |
+
input_blob = self.preprocess(srcimg)
|
40 |
+
|
41 |
+
self.net.setInput(input_blob)
|
42 |
+
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
43 |
+
|
44 |
+
predictions = self.postprocess(outs[0])
|
45 |
+
return predictions
|
46 |
+
|
47 |
+
def postprocess(self, outputs):
|
48 |
+
dets = outputs[0]
|
49 |
+
|
50 |
+
dets[:, :2] = (dets[:, :2] + self.grids) * self.expanded_strides
|
51 |
+
dets[:, 2:4] = np.exp(dets[:, 2:4]) * self.expanded_strides
|
52 |
+
|
53 |
+
# get boxes
|
54 |
+
boxes = dets[:, :4]
|
55 |
+
boxes_xyxy = np.ones_like(boxes)
|
56 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
57 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
58 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
59 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
60 |
+
|
61 |
+
# get scores and class indices
|
62 |
+
scores = dets[:, 4:5] * dets[:, 5:]
|
63 |
+
max_scores = np.amax(scores, axis=1)
|
64 |
+
max_scores_idx = np.argmax(scores, axis=1)
|
65 |
+
|
66 |
+
# batched-nms, TODO: replace with cv2.dnn.NMSBoxesBatched when OpenCV 4.7.0 is released
|
67 |
+
max_coord = boxes_xyxy.max()
|
68 |
+
offsets = max_scores_idx * (max_coord + 1)
|
69 |
+
boxes_for_nms = boxes_xyxy + offsets[:, None]
|
70 |
+
keep = cv2.dnn.NMSBoxes(boxes_for_nms.tolist(), max_scores.tolist(), self.confThreshold, self.nmsThreshold)
|
71 |
+
|
72 |
+
candidates = np.concatenate([boxes_xyxy, max_scores[:, None], max_scores_idx[:, None]], axis=1)
|
73 |
+
return candidates[keep]
|
74 |
+
|
75 |
+
def generateAnchors(self):
|
76 |
+
self.grids = []
|
77 |
+
self.expanded_strides = []
|
78 |
+
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
79 |
+
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
80 |
+
|
81 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
|
82 |
+
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
|
83 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
84 |
+
self.grids.append(grid)
|
85 |
+
shape = grid.shape[:2]
|
86 |
+
self.expanded_strides.append(np.full((*shape, 1), stride))
|
87 |
+
|
88 |
+
self.grids = np.concatenate(self.grids, 1)
|
89 |
+
self.expanded_strides = np.concatenate(self.expanded_strides, 1)
|