Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
demo.py
CHANGED
@@ -1,29 +1,21 @@
|
|
1 |
import numpy as np
|
2 |
-
import cv2
|
3 |
import argparse
|
4 |
|
5 |
from yolox import YoloX
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
11 |
-
return False
|
12 |
-
else:
|
13 |
-
raise NotImplementedError
|
14 |
-
|
15 |
-
backends = [cv2.dnn.DNN_BACKEND_OPENCV, cv2.dnn.DNN_BACKEND_CUDA]
|
16 |
-
targets = [cv2.dnn.DNN_TARGET_CPU, cv2.dnn.DNN_TARGET_CUDA, cv2.dnn.DNN_TARGET_CUDA_FP16]
|
17 |
-
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
|
18 |
-
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
29 |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
|
@@ -43,8 +35,8 @@ classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
|
43 |
def letterbox(srcimg, target_size=(640, 640)):
|
44 |
padded_img = np.ones((target_size[0], target_size[1], 3)) * 114.0
|
45 |
ratio = min(target_size[0] / srcimg.shape[0], target_size[1] / srcimg.shape[1])
|
46 |
-
resized_img =
|
47 |
-
srcimg, (int(srcimg.shape[1] * ratio), int(srcimg.shape[0] * ratio)), interpolation=
|
48 |
).astype(np.float32)
|
49 |
padded_img[: int(srcimg.shape[0] * ratio), : int(srcimg.shape[1] * ratio)] = resized_img
|
50 |
|
@@ -58,7 +50,7 @@ def vis(dets, srcimg, letterbox_scale, fps=None):
|
|
58 |
|
59 |
if fps is not None:
|
60 |
fps_label = "FPS: %.2f" % fps
|
61 |
-
|
62 |
|
63 |
for det in dets:
|
64 |
box = unletterbox(det[:4], letterbox_scale).astype(np.int32)
|
@@ -68,39 +60,55 @@ def vis(dets, srcimg, letterbox_scale, fps=None):
|
|
68 |
x0, y0, x1, y1 = box
|
69 |
|
70 |
text = '{}:{:.1f}%'.format(classes[cls_id], score * 100)
|
71 |
-
font =
|
72 |
-
txt_size =
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
return res_img
|
78 |
|
79 |
if __name__=='__main__':
|
80 |
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
|
81 |
-
parser.add_argument('--input', '-i', type=str,
|
82 |
-
|
83 |
-
parser.add_argument('--
|
84 |
-
|
85 |
-
parser.add_argument('--
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
args = parser.parse_args()
|
91 |
|
|
|
|
|
|
|
92 |
model_net = YoloX(modelPath= args.model,
|
93 |
confThreshold=args.confidence,
|
94 |
nmsThreshold=args.nms,
|
95 |
objThreshold=args.obj,
|
96 |
-
backendId=
|
97 |
-
targetId=
|
98 |
|
99 |
-
tm =
|
100 |
tm.reset()
|
101 |
if args.input is not None:
|
102 |
-
image =
|
103 |
-
input_blob =
|
104 |
input_blob, letterbox_scale = letterbox(input_blob)
|
105 |
|
106 |
# Inference
|
@@ -113,25 +121,25 @@ if __name__=='__main__':
|
|
113 |
|
114 |
if args.save:
|
115 |
print('Resutls saved to result.jpg\n')
|
116 |
-
|
117 |
|
118 |
if args.vis:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
else:
|
124 |
print("Press any key to stop video capture")
|
125 |
deviceId = 0
|
126 |
-
cap =
|
127 |
|
128 |
-
while
|
129 |
hasFrame, frame = cap.read()
|
130 |
if not hasFrame:
|
131 |
print('No frames grabbed!')
|
132 |
break
|
133 |
|
134 |
-
input_blob =
|
135 |
input_blob, letterbox_scale = letterbox(input_blob)
|
136 |
|
137 |
# Inference
|
@@ -141,6 +149,6 @@ if __name__=='__main__':
|
|
141 |
|
142 |
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
|
143 |
|
144 |
-
|
145 |
|
146 |
tm.reset()
|
|
|
1 |
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
import argparse
|
4 |
|
5 |
from yolox import YoloX
|
6 |
|
7 |
+
# Check OpenCV version
|
8 |
+
assert cv.__version__ >= "4.7.0", \
|
9 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Valid combinations of backends and targets
|
12 |
+
backend_target_pairs = [
|
13 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
14 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
15 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
16 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
17 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
18 |
+
]
|
19 |
|
20 |
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
21 |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
|
|
|
35 |
def letterbox(srcimg, target_size=(640, 640)):
|
36 |
padded_img = np.ones((target_size[0], target_size[1], 3)) * 114.0
|
37 |
ratio = min(target_size[0] / srcimg.shape[0], target_size[1] / srcimg.shape[1])
|
38 |
+
resized_img = cv.resize(
|
39 |
+
srcimg, (int(srcimg.shape[1] * ratio), int(srcimg.shape[0] * ratio)), interpolation=cv.INTER_LINEAR
|
40 |
).astype(np.float32)
|
41 |
padded_img[: int(srcimg.shape[0] * ratio), : int(srcimg.shape[1] * ratio)] = resized_img
|
42 |
|
|
|
50 |
|
51 |
if fps is not None:
|
52 |
fps_label = "FPS: %.2f" % fps
|
53 |
+
cv.putText(res_img, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
54 |
|
55 |
for det in dets:
|
56 |
box = unletterbox(det[:4], letterbox_scale).astype(np.int32)
|
|
|
60 |
x0, y0, x1, y1 = box
|
61 |
|
62 |
text = '{}:{:.1f}%'.format(classes[cls_id], score * 100)
|
63 |
+
font = cv.FONT_HERSHEY_SIMPLEX
|
64 |
+
txt_size = cv.getTextSize(text, font, 0.4, 1)[0]
|
65 |
+
cv.rectangle(res_img, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
66 |
+
cv.rectangle(res_img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1)
|
67 |
+
cv.putText(res_img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1)
|
68 |
|
69 |
return res_img
|
70 |
|
71 |
if __name__=='__main__':
|
72 |
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
|
73 |
+
parser.add_argument('--input', '-i', type=str,
|
74 |
+
help='Path to the input image. Omit for using default camera.')
|
75 |
+
parser.add_argument('--model', '-m', type=str, default='object_detection_yolox_2022nov.onnx',
|
76 |
+
help="Path to the model")
|
77 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
78 |
+
help='''Choose one of the backend-target pair to run this demo:
|
79 |
+
{:d}: (default) OpenCV implementation + CPU,
|
80 |
+
{:d}: CUDA + GPU (CUDA),
|
81 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
82 |
+
{:d}: TIM-VX + NPU,
|
83 |
+
{:d}: CANN + NPU
|
84 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
85 |
+
parser.add_argument('--confidence', default=0.5, type=float,
|
86 |
+
help='Class confidence')
|
87 |
+
parser.add_argument('--nms', default=0.5, type=float,
|
88 |
+
help='Enter nms IOU threshold')
|
89 |
+
parser.add_argument('--obj', default=0.5, type=float,
|
90 |
+
help='Enter object threshold')
|
91 |
+
parser.add_argument('--save', '-s', action='store_true',
|
92 |
+
help='Specify to save results. This flag is invalid when using camera.')
|
93 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
94 |
+
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
|
95 |
args = parser.parse_args()
|
96 |
|
97 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
98 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
99 |
+
|
100 |
model_net = YoloX(modelPath= args.model,
|
101 |
confThreshold=args.confidence,
|
102 |
nmsThreshold=args.nms,
|
103 |
objThreshold=args.obj,
|
104 |
+
backendId=backend_id,
|
105 |
+
targetId=target_id)
|
106 |
|
107 |
+
tm = cv.TickMeter()
|
108 |
tm.reset()
|
109 |
if args.input is not None:
|
110 |
+
image = cv.imread(args.input)
|
111 |
+
input_blob = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
112 |
input_blob, letterbox_scale = letterbox(input_blob)
|
113 |
|
114 |
# Inference
|
|
|
121 |
|
122 |
if args.save:
|
123 |
print('Resutls saved to result.jpg\n')
|
124 |
+
cv.imwrite('result.jpg', img)
|
125 |
|
126 |
if args.vis:
|
127 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
128 |
+
cv.imshow(args.input, img)
|
129 |
+
cv.waitKey(0)
|
130 |
|
131 |
else:
|
132 |
print("Press any key to stop video capture")
|
133 |
deviceId = 0
|
134 |
+
cap = cv.VideoCapture(deviceId)
|
135 |
|
136 |
+
while cv.waitKey(1) < 0:
|
137 |
hasFrame, frame = cap.read()
|
138 |
if not hasFrame:
|
139 |
print('No frames grabbed!')
|
140 |
break
|
141 |
|
142 |
+
input_blob = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
143 |
input_blob, letterbox_scale = letterbox(input_blob)
|
144 |
|
145 |
# Inference
|
|
|
149 |
|
150 |
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
|
151 |
|
152 |
+
cv.imshow("YoloX Demo", img)
|
153 |
|
154 |
tm.reset()
|
yolox.py
CHANGED
@@ -23,12 +23,10 @@ class YoloX:
|
|
23 |
def name(self):
|
24 |
return self.__class__.__name__
|
25 |
|
26 |
-
def
|
27 |
-
self.
|
|
|
28 |
self.net.setPreferableBackend(self.backendId)
|
29 |
-
|
30 |
-
def setTarget(self, targetId):
|
31 |
-
self.targetId = targetId
|
32 |
self.net.setPreferableTarget(self.targetId)
|
33 |
|
34 |
def preprocess(self, img):
|
|
|
23 |
def name(self):
|
24 |
return self.__class__.__name__
|
25 |
|
26 |
+
def setBackendAndTarget(self, backendId, targetId):
|
27 |
+
self._backendId = backendId
|
28 |
+
self._targetId = targetId
|
29 |
self.net.setPreferableBackend(self.backendId)
|
|
|
|
|
|
|
30 |
self.net.setPreferableTarget(self.targetId)
|
31 |
|
32 |
def preprocess(self, img):
|