File size: 4,946 Bytes
84b1f8b
 
 
 
 
b8db8ba
79ec814
84b1f8b
79ec814
cb40a95
 
 
 
 
79ec814
84b1f8b
 
 
 
 
 
 
 
 
79ec814
 
 
 
b8db8ba
 
84b1f8b
 
 
 
 
 
 
 
4ba4df1
 
 
 
79ec814
 
 
 
 
 
 
 
 
 
 
 
50cbdd7
79ec814
 
 
 
 
 
 
 
 
84b1f8b
 
79ec814
84b1f8b
 
 
 
79ec814
 
84b1f8b
79ec814
 
 
 
 
 
 
 
4ba4df1
 
 
b8db8ba
 
4ba4df1
b8db8ba
 
 
79ec814
4ba4df1
 
 
 
 
79ec814
 
 
 
 
 
 
 
 
 
 
 
84b1f8b
79ec814
 
 
4ba4df1
 
 
 
 
79ec814
4ba4df1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.

import argparse

import numpy as np
import cv2 as cv

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
       "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

from vittrack import VitTrack

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]

parser = argparse.ArgumentParser(
    description="VIT track opencv API")
parser.add_argument('--input', '-i', type=str,
                    help='Usage: Set path to the input video. Omit for using default camera.')
parser.add_argument('--model_path', type=str, default='object_tracking_vittrack_2023sep.onnx',
                    help='Usage: Set model path')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true', default=False,
                    help='Usage: Specify to save a file with results.')
parser.add_argument('--vis', '-v', action='store_true', default=True,
                    help='Usage: Specify to open a new window to show results.')
args = parser.parse_args()
def visualize(image, bbox, score, isLocated, fps=None, box_color=(0, 255, 0),text_color=(0, 255, 0), fontScale = 1, fontSize = 1):
    output = image.copy()
    h, w, _ = output.shape

    if fps is not None:
        cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 30), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)

    if isLocated and score >= 0.3:
        # bbox: Tuple of length 4
        x, y, w, h = bbox
        cv.rectangle(output, (x, y), (x+w, y+h), box_color, 2)
        cv.putText(output, '{:.2f}'.format(score), (x, y+25), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)
    else:
        text_size, baseline = cv.getTextSize('Target lost!', cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize)
        text_x = int((w - text_size[0]) / 2)
        text_y = int((h - text_size[1]) / 2)
        cv.putText(output, 'Target lost!', (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, (0, 0, 255), fontSize)

    return output

if __name__ == '__main__':
    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]

    model = VitTrack(
        model_path=args.model_path,
        backend_id=backend_id,
        target_id=target_id)

    # Read from args.input
    _input = 0 if args.input is None else args.input
    video = cv.VideoCapture(_input)

    # Select an object
    has_frame, first_frame = video.read()
    if not has_frame:
        print('No frames grabbed!')
        exit()
    first_frame_copy = first_frame.copy()
    cv.putText(first_frame_copy, "1. Drag a bounding box to track.", (0, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
    cv.putText(first_frame_copy, "2. Press ENTER to confirm", (0, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
    roi = cv.selectROI('VitTrack Demo', first_frame_copy)

    if np.all(np.array(roi) == 0):
        print("No ROI is selected! Exiting ...")
        exit()
    else:
        print("Selected ROI: {}".format(roi))

    if args.save:
        fps = video.get(cv.CAP_PROP_FPS)
        frame_size = (first_frame.shape[1], first_frame.shape[0])
        output_video = cv.VideoWriter('output.mp4', cv.VideoWriter_fourcc(*'mp4v'), fps, frame_size)

    # Init tracker with ROI
    model.init(first_frame, roi)

    # Track frame by frame
    tm = cv.TickMeter()
    while cv.waitKey(1) < 0:
        has_frame, frame = video.read()
        if not has_frame:
            print('End of video')
            break
        # Inference
        tm.start()
        isLocated, bbox, score = model.infer(frame)
        tm.stop()
        # Visualize
        frame = visualize(frame, bbox, score, isLocated, fps=tm.getFPS())
        if args.save:
            output_video.write(frame)

        if args.vis:
            cv.imshow('VitTrack Demo', frame)
        tm.reset()

    if args.save:
        output_video.release()

    video.release()
    cv.destroyAllWindows()