File size: 1,280 Bytes
e5b568e
 
260eb6d
e7d94f5
260eb6d
e5b568e
260eb6d
 
e5b568e
50fc340
 
 
e5b568e
 
 
e7d94f5
e5b568e
 
 
 
 
e7d94f5
 
 
e5b568e
 
237ca2e
 
 
 
e5b568e
 
 
 
 
 
 
260eb6d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Palm detector from MediaPipe Handpose

This model detects palm bounding boxes and palm landmarks, and is converted from TFLite to ONNX using following tools:

- TFLite model to ONNX: https://github.com/onnx/tensorflow-onnx
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
- SSD Anchors are generated from [GenMediaPipePalmDectionSSDAnchors](https://github.com/VimalMollyn/GenMediaPipePalmDectionSSDAnchors)


**Note**:
- Visit https://google.github.io/mediapipe/solutions/models.html#hands for models of larger scale.

## Demo

Run the following commands to try the demo:

```bash
# detect on camera input
python demo.py
# detect on an image
python demo.py -i /path/to/image

# get help regarding various parameters
python demo.py --help
```

### Example outputs

![webcam demo](./examples/mppalmdet_demo.gif)

## License

All files in this directory are licensed under [Apache 2.0 License](./LICENSE).

## Reference

- MediaPipe Handpose: https://github.com/tensorflow/tfjs-models/tree/master/handpose
- MediaPipe hands model and model card: https://google.github.io/mediapipe/solutions/models.html#hands
- Int8 model quantized with rgb evaluation set of FreiHAND: https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html