File size: 6,408 Bytes
87cd14e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import numpy as np
import cv2
import argparse
from yolox import YoloX
def str2bool(v):
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
return True
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
return False
else:
raise NotImplementedError
backends = [cv2.dnn.DNN_BACKEND_OPENCV, cv2.dnn.DNN_BACKEND_CUDA]
targets = [cv2.dnn.DNN_TARGET_CPU, cv2.dnn.DNN_TARGET_CUDA, cv2.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
backends += [cv2.dnn.DNN_BACKEND_TIMVX]
targets += [cv2.dnn.DNN_TARGET_NPU]
help_msg_backends += "; {:d}: TIMVX"
help_msg_targets += "; {:d}: NPU"
except:
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
def letterbox(srcimg, target_size=(640, 640)):
padded_img = np.ones((target_size[0], target_size[1], 3)) * 114.0
ratio = min(target_size[0] / srcimg.shape[0], target_size[1] / srcimg.shape[1])
resized_img = cv2.resize(
srcimg, (int(srcimg.shape[1] * ratio), int(srcimg.shape[0] * ratio)), interpolation=cv2.INTER_LINEAR
).astype(np.float32)
padded_img[: int(srcimg.shape[0] * ratio), : int(srcimg.shape[1] * ratio)] = resized_img
return padded_img, ratio
def unletterbox(bbox, letterbox_scale):
return bbox / letterbox_scale
def vis(dets, srcimg, letterbox_scale, fps=None):
res_img = srcimg.copy()
if fps is not None:
fps_label = "FPS: %.2f" % fps
cv2.putText(res_img, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
for det in dets:
box = unletterbox(det[:4], letterbox_scale).astype(np.int32)
score = det[-2]
cls_id = int(det[-1])
x0, y0, x1, y1 = box
text = '{}:{:.1f}%'.format(classes[cls_id], score * 100)
font = cv2.FONT_HERSHEY_SIMPLEX
txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
cv2.rectangle(res_img, (x0, y0), (x1, y1), (0, 255, 0), 2)
cv2.rectangle(res_img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1)
cv2.putText(res_img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1)
return res_img
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='object_detection_yolox_2022nov.onnx', help="Path to the model")
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--confidence', default=0.5, type=float, help='Class confidence')
parser.add_argument('--nms', default=0.5, type=float, help='Enter nms IOU threshold')
parser.add_argument('--obj', default=0.5, type=float, help='Enter object threshold')
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
model_net = YoloX(modelPath= args.model,
confThreshold=args.confidence,
nmsThreshold=args.nms,
objThreshold=args.obj,
backendId=args.backend,
targetId=args.target)
tm = cv2.TickMeter()
tm.reset()
if args.input is not None:
image = cv2.imread(args.input)
input_blob = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model_net.infer(input_blob)
tm.stop()
print("Inference time: {:.2f} ms".format(tm.getTimeMilli()))
img = vis(preds, image, letterbox_scale)
if args.save:
print('Resutls saved to result.jpg\n')
cv2.imwrite('result.jpg', img)
if args.vis:
cv2.namedWindow(args.input, cv2.WINDOW_AUTOSIZE)
cv2.imshow(args.input, img)
cv2.waitKey(0)
else:
print("Press any key to stop video capture")
deviceId = 0
cap = cv2.VideoCapture(deviceId)
while cv2.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
input_blob = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model_net.infer(input_blob)
tm.stop()
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
cv2.imshow("YoloX Demo", img)
tm.reset()
|