File size: 10,036 Bytes
0bf46d3 167c85e 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import argparse
import numpy as np
import cv2 as cv
from efficientSAM import EfficientSAM
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='EfficientSAM Demo')
parser.add_argument('--input', '-i', type=str,
help='Set input path to a certain image.')
parser.add_argument('--model', '-m', type=str, default='image_segmentation_efficientsam_ti_2025april.onnx',
help='Set model path, defaults to image_segmentation_efficientsam_ti_2025april.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save a file with results. Invalid in case of camera input.')
args = parser.parse_args()
# Global configuration
WINDOW_SIZE = (800, 600) # Fixed window size (width, height)
MAX_POINTS = 6 # Maximum allowed points
points = [] # Store clicked coordinates (original image scale)
labels = [] # Point labels (-1: useless, 0: background, 1: foreground, 2: top-left, 3: bottom right)
backend_point = []
rectangle = False
current_img = None
def visualize(image, result):
"""
Visualize the inference result on the input image.
Args:
image (np.ndarray): The input image.
result (np.ndarray): The inference result.
Returns:
vis_result (np.ndarray): The visualized result.
"""
# get image and mask
vis_result = np.copy(image)
mask = np.copy(result)
# change mask to binary image
t, binary = cv.threshold(mask, 127, 255, cv.THRESH_BINARY)
assert set(np.unique(binary)) <= {0, 255}, "The mask must be a binary image."
# enhance red channel to make the segmentation more obviously
enhancement_factor = 1.8
red_channel = vis_result[:, :, 2]
# update the channel
red_channel = np.where(binary == 255, np.minimum(red_channel * enhancement_factor, 255), red_channel)
vis_result[:, :, 2] = red_channel
# draw borders
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_TC89_L1)
cv.drawContours(vis_result, contours, contourIdx = -1, color = (255,255,255), thickness=2)
return vis_result
def select(event, x, y, flags, param):
"""Handle mouse events with coordinate conversion"""
global points, labels, backend_point, rectangle, current_img
orig_img = param['original_img']
image_window = param['image_window']
if event == cv.EVENT_LBUTTONDOWN:
param['mouse_down_time'] = cv.getTickCount()
backend_point = [x, y]
elif event == cv.EVENT_MOUSEMOVE:
if rectangle == True:
rectangle_change_img = current_img.copy()
cv.rectangle(rectangle_change_img, (backend_point[0], backend_point[1]), (x, y), (255,0,0) , 2)
cv.imshow(image_window, rectangle_change_img)
elif len(backend_point) != 0 and len(points) < MAX_POINTS:
rectangle = True
elif event == cv.EVENT_LBUTTONUP:
if len(points) >= MAX_POINTS:
print(f"Maximum points reached {MAX_POINTS}.")
return
if rectangle == False:
duration = (cv.getTickCount() - param['mouse_down_time'])/cv.getTickFrequency()
label = -1 if duration > 0.5 else 1 # Long press = background
points.append([backend_point[0], backend_point[1]])
labels.append(label)
print(f"Added {['background','foreground','background'][label]} point {backend_point}.")
else:
if len(points) + 1 >= MAX_POINTS:
rectangle = False
backend_point.clear()
cv.imshow(image_window, current_img)
print(f"Points reached {MAX_POINTS}, could not add box.")
return
point_leftup = []
point_rightdown = []
if x > backend_point[0] or y > backend_point[1]:
point_leftup.extend(backend_point)
point_rightdown.extend([x,y])
else:
point_leftup.extend([x,y])
point_rightdown.extend(backend_point)
points.append(point_leftup)
points.append(point_rightdown)
print(f"Added box from {point_leftup} to {point_rightdown}.")
labels.append(2)
labels.append(3)
rectangle = False
backend_point.clear()
marked_img = orig_img.copy()
top_left = None
for (px, py), lbl in zip(points, labels):
if lbl == -1:
cv.circle(marked_img, (px, py), 5, (0, 0, 255), -1)
elif lbl == 1:
cv.circle(marked_img, (px, py), 5, (0, 255, 0), -1)
elif lbl == 2:
top_left = (px, py)
elif lbl == 3:
bottom_right = (px, py)
cv.rectangle(marked_img, top_left, bottom_right, (255,0,0) , 2)
cv.imshow(image_window, marked_img)
current_img = marked_img.copy()
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Load the EfficientSAM model
model = EfficientSAM(modelPath=args.model)
if args.input is not None:
# Read image
image = cv.imread(args.input)
if image is None:
print('Could not open or find the image:', args.input)
exit(0)
# create window
image_window = "Origin image"
cv.namedWindow(image_window, cv.WINDOW_NORMAL)
# change window size
rate = 1
rate1 = 1
rate2 = 1
if(image.shape[1]>WINDOW_SIZE[0]):
rate1 = WINDOW_SIZE[0]/image.shape[1]
if(image.shape[0]>WINDOW_SIZE[1]):
rate2 = WINDOW_SIZE[1]/image.shape[0]
rate = min(rate1, rate2)
# width, height
WINDOW_SIZE = (int(image.shape[1] * rate), int(image.shape[0] * rate))
cv.resizeWindow(image_window, WINDOW_SIZE[0], WINDOW_SIZE[1])
# put the window on the left of the screen
cv.moveWindow(image_window, 50, 100)
# set listener to record user's click point
param = {
'original_img': image,
'mouse_down_time': 0,
'image_window' : image_window
}
cv.setMouseCallback(image_window, select, param)
# tips in the terminal
print("Click — Select foreground point\n"
"Long press — Select background point\n"
"Drag — Create selection box\n"
"Enter — Infer\n"
"Backspace — Clear the prompts\n"
"Q - Quit")
# show image
cv.imshow(image_window, image)
current_img = image.copy()
# create window to show visualized result
vis_image = image.copy()
segmentation_window = "Segment result"
cv.namedWindow(segmentation_window, cv.WINDOW_NORMAL)
cv.resizeWindow(segmentation_window, WINDOW_SIZE[0], WINDOW_SIZE[1])
cv.moveWindow(segmentation_window, WINDOW_SIZE[0]+51, 100)
cv.imshow(segmentation_window, vis_image)
# waiting for click
while True:
# Check window status
# if click × to close the image window then ending
if (cv.getWindowProperty(image_window, cv.WND_PROP_VISIBLE) < 1 or
cv.getWindowProperty(segmentation_window, cv.WND_PROP_VISIBLE) < 1):
break
# Handle keyboard input
key = cv.waitKey(1)
# receive enter
if key == 13:
vis_image = image.copy()
cv.putText(vis_image, "infering...",
(50, vis_image.shape[0]//2),
cv.FONT_HERSHEY_SIMPLEX, 10, (255,255,255), 5)
cv.imshow(segmentation_window, vis_image)
result = model.infer(image=image, points=points, labels=labels)
if len(result) == 0:
print("clear and select points again!")
else:
vis_result = visualize(image, result)
cv.imshow(segmentation_window, vis_result)
elif key == 8 or key == 127: # ASCII for Backspace or Delete
points.clear()
labels.clear()
backend_point = []
rectangle = False
current_img = image
print("Points are cleared.")
cv.imshow(image_window, image)
elif key == ord('q') or key == ord('Q'):
break
cv.destroyAllWindows()
# Save results if save is true
if args.save:
cv.imwrite('./example_outputs/vis_result.jpg', vis_result)
cv.imwrite("./example_outputs/mask.jpg", result)
print('vis_result.jpg and mask.jpg are saved to ./example_outputs/')
else:
print('Set input path to a certain image.')
pass
|