ytfeng's picture
bump version to 4.8.0 (#190)
00a9b48
raw
history blame
7.28 kB
import numpy as np
import cv2 as cv
import argparse
from nanodet import NanoDet
# Check OpenCV version
assert cv.__version__ >= "4.8.0", \
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
def letterbox(srcimg, target_size=(416, 416)):
img = srcimg.copy()
top, left, newh, neww = 0, 0, target_size[0], target_size[1]
if img.shape[0] != img.shape[1]:
hw_scale = img.shape[0] / img.shape[1]
if hw_scale > 1:
newh, neww = target_size[0], int(target_size[1] / hw_scale)
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
left = int((target_size[1] - neww) * 0.5)
img = cv.copyMakeBorder(img, 0, 0, left, target_size[1] - neww - left, cv.BORDER_CONSTANT, value=0) # add border
else:
newh, neww = int(target_size[0] * hw_scale), target_size[1]
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
top = int((target_size[0] - newh) * 0.5)
img = cv.copyMakeBorder(img, top, target_size[0] - newh - top, 0, 0, cv.BORDER_CONSTANT, value=0)
else:
img = cv.resize(img, target_size, interpolation=cv.INTER_AREA)
letterbox_scale = [top, left, newh, neww]
return img, letterbox_scale
def unletterbox(bbox, original_image_shape, letterbox_scale):
ret = bbox.copy()
h, w = original_image_shape
top, left, newh, neww = letterbox_scale
if h == w:
ratio = h / newh
ret = ret * ratio
return ret
ratioh, ratiow = h / newh, w / neww
ret[0] = max((ret[0] - left) * ratiow, 0)
ret[1] = max((ret[1] - top) * ratioh, 0)
ret[2] = min((ret[2] - left) * ratiow, w)
ret[3] = min((ret[3] - top) * ratioh, h)
return ret.astype(np.int32)
def vis(preds, res_img, letterbox_scale, fps=None):
ret = res_img.copy()
# draw FPS
if fps is not None:
fps_label = "FPS: %.2f" % fps
cv.putText(ret, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# draw bboxes and labels
for pred in preds:
bbox = pred[:4]
conf = pred[-2]
classid = pred[-1].astype(np.int32)
# bbox
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
cv.rectangle(ret, (xmin, ymin), (xmax, ymax), (0, 255, 0), thickness=2)
# label
label = "{:s}: {:.2f}".format(classes[classid], conf)
cv.putText(ret, label, (xmin, ymin - 10), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
return ret
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
parser.add_argument('--input', '-i', type=str,
help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str,
default='object_detection_nanodet_2022nov.onnx', help="Path to the model")
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--confidence', default=0.35, type=float,
help='Class confidence')
parser.add_argument('--nms', default=0.6, type=float,
help='Enter nms IOU threshold')
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
model = NanoDet(modelPath= args.model,
prob_threshold=args.confidence,
iou_threshold=args.nms,
backend_id=backend_id,
target_id=target_id)
tm = cv.TickMeter()
tm.reset()
if args.input is not None:
image = cv.imread(args.input)
input_blob = cv.cvtColor(image, cv.COLOR_BGR2RGB)
# Letterbox transformation
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model.infer(input_blob)
tm.stop()
print("Inference time: {:.2f} ms".format(tm.getTimeMilli()))
img = vis(preds, image, letterbox_scale)
if args.save:
print('Resutls saved to result.jpg\n')
cv.imwrite('result.jpg', img)
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, img)
cv.waitKey(0)
else:
print("Press any key to stop video capture")
deviceId = 0
cap = cv.VideoCapture(deviceId)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
input_blob = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model.infer(input_blob)
tm.stop()
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
cv.imshow("NanoDet Demo", img)
tm.reset()